
Shin Yoo

Continuous Integration/
Deployment
CS350 Introduction to Software Engineering

Site Reliability Engineering (SRE)
Originated from Google circa 2003

• A set of principles and practices that incorporates aspects of SE and IT
infrastructure/operations, with the aim of creating highly reliable and scalable
software systems (Wikipedia)

• Core principles:

• Automate as much as possible

• Purse just the right amount of reliability

• Design/engineer the system so that risks of availability, latency, and efficiency
are minimized

• Any aspects of the system should be observable

Push on Green
USENIX magazine ;login:, 2014

• https://www.usenix.org/system/files/login/articles/login_1410_05_klein.pdf

• Instead of having a fixed release schedule, the “push-on-green” practice aims
to be able to release the software whenever all test results are “green” (i.e,
pass)

• All changes are tested as they come in

• Pushmasters / release managers observe the testing outcomes, and
organizes a push (=release)

https://www.usenix.org/system/files/login/articles/login_1410_05_klein.pdf

Continuous Integration

• The practice of all developers merging their working copies and changes to
the main branch several times a day.

• The term was coined by Grady Booch in 1994.

• Extreme Programming (XP) made this one of their main principles.

• Why? Recall Trunk-Based Development

• The longer you work on your own branch, the more likely that you will run
into a conflict/merge hell

Continuous Delivery / Continuous Deployment

• If changes are continuously merged, the follow-up process should also be
continuous

• Continuous Delivery: automatically delivers the merged code to the staging/
testing environment

• Staging Environment: a close replica of the production environment, where
you can do end-to-end system testing

• Continuous Deployment: automatically delivers the merged code to the
production stage

• Every change becomes automatically available for the end-user

DevOps
(no clear technical definition but…)

• Development (i.e., making software) + Operations (i.e., running/serving
software)

• Under CI/CD, the pipeline between development and release is increasingly
handled programmatically: perhaps software engineer can handle the whole
thing?

• Advances in infrastructure/technology contributed heavily:

• Cloud/Elastic Computing

• Virtualization/Containers

Benefits

• Faster time to market

• Frequent, smaller releases allows us to spot problems earlier on, resulting in
more reliable software

• Easier collaborations, because everyone is working on same, or at least very
closer versions of, source code

• Cost saving with automation

CI/CD Frameworks

• Jenkins: originally Hudson, being developed at Sun Microsystems by
Kohsuke Kawaguchi - after Oracle bought Sun, developers created an open
source version. You have to run your own instance. (https://www.jenkins.io/)

• Travis CI: offers cloud-based commercial service, known to be easier to use
then Jenkins.

• GitHub Actions: offered as part of GitHub - closer/easier integration with SCM

https://www.jenkins.io/

Hands-on: GitHub Actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

• GitHub Actions: a CI/CD platform in GitHub - no need to monitor code
changes

• Workflow: a repeatable pipeline that includes one or more jobs

• Event: a repository-related events (such as push) that can trigger a workflow

• Runner: a virtual machine that runs a single job at a time

• Job: a set of individual actions or shell scripts

• Action: a small custom application that performs a repetitive task

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

Preparations

• Create an empty public GitHub
repository with the name
cs350-github-actions

• Let’s add a simple Python
program called triangle.py

• It may not be correct :)

• Commit and push

Hands-on: GitHub Actions

def triangle(a, b, c):
 if a < 0 or b < 0 or c < 0:
 return -1
 elif a + b < c or b + c < a or c + a < b:
 return -1
 elif a == b or b == c or c == a:
 return 1
 elif a == b and b == c:
 return 2
 else:
 return 4

Adding Tests

• Now let’s add a test!

• Create test_triangle.py

• Try executing the tests:

• First, install pytest  
(pip install pytest)

• Second, either execute
pytest, or  
python -m pytest

Hands-on: GitHub Actions

from triangle import triangle

def test_invalid1():
 assert triangle(-1, 0, 1) == -1

def test_equilateral():
 assert triangle(3, 3, 3) == 1

Adding a workflow

• It’d be nice if the tests are
automatically executed
whenever new commit is pushed
to GitHub!

• Create .github/workflows

• Inside, create test.yml

• Commit & push

Hands-on: GitHub Actions name: Python Test

on: [push]

jobs:
 build:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v3
 - name: Set up Python 3.11
 uses: actions/setup-python@v4
 with:
 python-version: '3.11'
 - name: Install dependencies
 run: |
 python -m pip install --upgrade pip
 pip install pytest coverage

 - name: Test
 run: python -m pytest

Hands-on: GitHub Actions
Adding Features

• First, add a test case (a new test function in test_triangle.py) to reveal
the bug in triangle.py

• Try pushing the new test

• Second, fix the bug, push the fix, and check the workflow result.

• Finally, see if you can add a branch in triangle.py so that it checks for
right angle triangles, whose results should be 3.

Hands-on: GitHub Actions
Badge of Honor?

• Let’s try a little hack: have you seen a badge like this on GitHub? How do they
do it?

• The workflow, Part 1

• On push —> checkout new changes —> execute the included tests, but do
it while measuring coverage —> execute an action that turns coverage
results into badge image

Hands-on: GitHub Actions
Badge of Honor?

- name: Measure coverage with PyTest
 run: |
 coverage run --branch -m pytest
 coverage report
 coverage json

- name: Coverage Badge
 uses: tj-actions/coverage-badge-py@v2

Hands-on: GitHub Actions
Badge of Honor?

• The workflow, Part 2

• We now have generated coverage.svg, which is the vector image for the
badge. It is now in the runner VM.

• How do we display this in README.md??

• Idea 1: push the coverage.svg into our repository, and link the image.

• What is missing from idea 1? 🤠

Hands-on: GitHub Actions
Badge of Honor?

• The workflow, Part 2

• Idea 2: push the coverage.svg into our repository, but on a SEPARATE
branch reserved for the badge! This won’t mess with whatever branch that
we are developing on.

• Linking can be done via URL:  
 
https://rawgithubusercontents.com/[user]/[repository]/
[branch]/[filepath]

Hands-on: GitHub Actions
Badge of Honor?

 - name: Verify Changed files
 uses: tj-actions/verify-changed-files@v13
 id: verify-changed-files
 with:
 files: coverage.svg

 - name: Commit files
 if: steps.verify-changed-files.outputs.files_changed == 'true'
 run: |
 git config --local user.email "github-actions[bot]@users.noreply.github.com"
 git config --local user.name "github-actions[bot]"
 git add coverage.svg
 git commit -m "Updated coverage.svg"

- name: Push changes

 if: steps.verify-changed-files.outputs.files_changed == 'true'

 uses: ad-m/github-push-action@master

 with:

 github_token: ${{ secrets.github_token }}

 branch: badge

 force: true

Hands-on: GitHub Actions
Badge of Honor?

 - name: Push changes
 if: steps.verify-changed-files.outputs.files_changed == 'true'
 uses: ad-m/github-push-action@master
 with:
 github_token: ${{ secrets.github_token }}
 branch: badge
 force: true

Badge of Honor?

• You need to allow your actions
write permission to the
repository

• Configure this under Settings >
Actions > General

Hands-on: GitHub Actions

Badge of Honor?

• Add a link to the generated
badge in the other branch into
README.md in your project.
Commit & push.

• Finally, add a new test that
covers new cases, and see if you
can see the badge.

Hands-on: GitHub Actions

![coverage badge](https://
raw.githubusercontent.com/ntrolls/cs350-
github-actions/badge/coverage.svg)

A note on the coverage badge hack

• Pushing the badge image into the repository is not REALLY ideal, even if it
lives in a separate branch.

• An alternative would be:

• Move the file to your own web server, which will host the image only, or

• Depend on a 3rd party service (such as https://coveralls.io/) that will send
the results to their own server to be hosted

• We used this hack as a demonstration of push action, etc

https://coveralls.io/

Summary

• VCM with automated build completes what we call CI.

• It can be extended to delivery/deployment, resulting in CD.

• CI/CD is a lasting impact from the agile paradigm shift, due to the many
benefits it has.

• Know how to configure basic GitHub actions for your project.

