
Preparations

• CMake: https://cmake.org/install/

• Gradle: https://gradle.org/install/

• Compilers for C++ / Java

https://cmake.org/install/
https://gradle.org/install/

Shin Yoo

Build Systems
CS350 Introduction to Software engineering

Compile vs. Build

• You compile a single source code file.

• You build a software project.

• Manage dependencies between individual files.

• Manage external dependencies.

• Automatically execute test cases.

• Automatically generate documentations (based on information in source).

Build System

• Tools/frameworks that allow you to process/execute build programatically.

• Typically involves a Domain Specific Language (DSL) that can describe:

• Individual tasks

• Dependencies between them

• Ability to invoke external tools (compilers, etc)

• Sometimes full-fledged language can be used (gradle scripts are written in
groovy or kotlin_)

Build Scripts

• The DSL script that can be executed by the build system and actually
performs the build.

• Should be part of your source code, and committed to a repository.

• Have you seen Makefile, CMakefile, or build.xml?

Make / Makefile
Stuart Feldman, April 1976 at Bell Labs (Unix version 1.0)

• A basic, default build tool that comes with *nix systems.

• By default, make takes Makefile (unless you specify the input using -f)

• Targets and pre-requisites are all file names; commands are any shell commands.

target [, target]: pre-requisites
 command1
 command2
 …

Makefile Structure

demo: echo

Prerequisites

• You can chain tasks based on their dependency.

• Given dependency, make decides the task order using topological sorting.

• If A is a prerequisite for B, add A —> B.

• Topological sorting based on in-degrees.

demo: hello + touch

A B

EDC

A B

EDC

0

1 1

1 2

A B

EDC

0 1

1 2

C

A B

ED

0

0 1

C

A B

ED

0

C

A B

ED

make -j [jobs]

Timestamps

• Make determines whether a target file is up to date, or needs to be made
again, based on the timestamps in the file system.

• If the target is older than any of the pre-requisites, it needs to be made
again.

demo: hello + touch

Typical make targets

• clean: remove all files that have been generated by running this Makefile

• install: builds, then copies the executables to appropriate locations so that
the executables can be used (e.g., /usr/local/bin)

• all: achieve all other tasks

Other details (there are more tips and tricks)
See https://makefiletutorial.com/ for a comprehensive tutorial

• variables

• files := file1 file2, followed by $(files)

• wildcards

• For example: $(wildcard *.c)

• Automatic variables

• $@: target name

• $?: all pre-requisites newer than target

• $^: all pre-requisites demo: hey

https://makefiletutorial.com/

CMake
the meta make

• Manages the build system in a compiler-independent way: useful when you
want to specify build process across multiple platforms

• Chooses the appropriate build toolchain based on local platform and
language standard

• Can specify variable values in the build script and share those values in the
source code via pre-processing

CMake
Some basic instructions

• project(name version): sets the project name, and version numbers

• add_executable(target_name dependencies): sets the dependency
between the target and files it depends on

• set(variable_name value): sets the value of a variable

• configure_file (input output): copies input file to output file while
preprocessing variable values

CMake Hands-on
(taken from https://cmake.org/cmake/help/latest/guide/tutorial/)

• Todo 1: set the minimum required version of CMake in CMakeLists.txt

• Todo 2: set the project name to Tutorial in CMakeLists.txt

• Todo 3: add an executable called Tutorial to the project - this is built using the
tutorial.cxx file.

• Can you build it now?

The tutorial example can be downloaded from:

https://cmake.org/cmake/help/latest/_downloads/ab37d97e635ba7864c2f68e9eb370b73/cmake-3.26.2-tutorial-source.zip

https://cmake.org/cmake/help/latest/guide/tutorial/
https://cmake.org/cmake/help/latest/_downloads/ab37d97e635ba7864c2f68e9eb370b73/cmake-3.26.2-tutorial-source.zip

CMake Hands-on
(taken from https://cmake.org/cmake/help/latest/guide/tutorial/)

$ mkdir Step1_build
$ cd Step1_build
$ cmake ../Step1 # create the actual build scripts
$ ls
$ cmake --build . # executes the created build scripts

https://cmake.org/cmake/help/latest/guide/tutorial/

CMake Hands-on
(taken from https://cmake.org/cmake/help/latest/guide/tutorial/)

• Todo 4: we will introduce C++11 feature into tutorial.cxx as above.

• Todo 5: remove the line #include <cstdlib> from tutorial.cxx file.

• Can you build?

• Todo 6: add CMAKE_CXX_STANDARD and CMAKE_CXX_STANDARD_REQUIRED
to CMakeLists.txt file.

in tutorial.cxx file, change the following
const double inputValue = atof(argv[1]);

into the following, which is in C++11 standard
const double inputValue = std::stod(argv[1]);

https://cmake.org/cmake/help/latest/guide/tutorial/

CMake Hands-on
(taken from https://cmake.org/cmake/help/latest/guide/tutorial/)

• Todo 7: add version number 1.0 to the current project in CMakeLists.txt file.

• Todo 8: process TutorialConfig.h.in file with the version number and add
to the build directory.

• Todo 9: add the build directory to the include path.

• Todo 10: define Tutorial_VERSION_MAJOR and Tutorial_VERSION_MINOR
in TutorialConfig.h.in file.

• Todo 11: include TutorialConfig.h in tutorial.cxx file.

• Todo 12: print the version number!

https://cmake.org/cmake/help/latest/guide/tutorial/

Another Neat Tool,  
James Duncan Davidson, 1999

• Java build system

• <target>: specifies units of
build targets

• <task>: specifies units of build
activity

• Can modularise using the <ant>
task

ANT
<project name="example" default="link">

<property name="blddir" location="build" />
<property name="classes" location="${blddir}/classes" />
<property name="dist" location="${blddir}/dist" />

<target name="init">
 <mkdir dir="${blddir}" />
 <mkdir dir="${classes}" />
 <mkdir dir="${dist}" />
</target>

<target name="compile" depends="init">
 <javac destdir="${classes}"
 srcdir="maindir"
 includes="**/*.java"/>
 <ant antfile="sub/build.xml"
 target="compile"/>
</target>

<target name="link" depends="compile">
 <jar jarfile="${dist}/example.jar"
 basedir="${classes}"/>
</target>

<target name="clean">
 <delete dir="${blddir}" />
</target>
</project>

Maven
Apache Software Foundation, 2004

• Instead of individual build targets, organises builds into multiple stages of Build Lifecycle,
such as validate, compile, test, package, install, …

• Provides 3rd party library repository, so that you do not have to commit specific versions
of libraries your project depends on into VCS

• https://mvnrepository.com/

• <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
</dependency>

https://mvnrepository.com/

Gradle
From 2008, Apache License 2.0

• Official build system of Android SDK

• Uses Groovy/Kotlin based Domain
Specific Language (DSL) to describe
builds

• More flexible compared to stages of
Maven

• Better performance (build caching
across networks, incremental builds,
parallel compilation…) https://gradle.org/maven-vs-gradle/

https://gradle.org/maven-vs-gradle/

Bazel
Google, 2015

• An open source version of Google’s internal build tool, Blaze

• Uses contents-based hash to detect up-to-dateness (filesystem timestamps
are problematic when…?)

• Uses Starlark DSL, which is a subset of Python

• Designed to handle multi-lingual projects from the scratch

Gradle Build Scripts
Build scripts are code (you have full power of Kotlin/Groovy)

build.gradle
tasks.register('count') {
 doLast {
 4.times { print "$it " }
 }
}

$ gradle -q count
0 1 2 3

build.gradle
4.times { counter ->
 tasks.register("task$counter") {
 doLast {
 println "I'm task number $counter"
 }
 }
}
tasks.named('task0') { dependsOn('task2', 'task3') }

$ gradle -q task0
I'm task number 2
I'm task number 3
I'm task number 0

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)

• Create a temporary project directory.

• Inside, create the following structure: 
 
└── src

 └── main
 └── java
 └── hello

• (mkdir -p src/main/java/hello)

https://spring.io/guides/gs/gradle/

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)

src/main/java/hello/HelloWorld.java

package hello;

public class HelloWorld {
 public static void main(String[] args) {
 Greeter greeter = new Greeter();
 System.out.println(greeter.sayHello());
 }
}

src/main/java/hello/Greeter.java

package hello;

public class Greeter {
 public String sayHello() {
 return "Hello world!";
 }
}

https://spring.io/guides/gs/gradle/

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)

$ touch build.gradle
$ gradle tasks

$ vi build.gradle #add the following line

apply plugin: ‘java’

$ gradle tasks
$ gradle build
…
$ ls

https://spring.io/guides/gs/gradle/

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)
src/main/java/hello/HelloWorld.java

package hello;

import org.joda.time.LocalTime;

public class HelloWorld {
 public static void main(String[] args) {
 LocalTime currentTime = new LocalTime();
 System.out.println("The current local time is: " + currentTime);

 Greeter greeter = new Greeter();
 System.out.println(greeter.sayHello());
 }
}

https://spring.io/guides/gs/gradle/

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)

$ gradle build

$ vi build.gradle #add the following lines

repositories {
 mavenCentral()
}

sourceCompatibility = 1.8
targetCompatibility = 1.8

dependencies {
 implementation “joda-time:joda-time:2.2”
 testImplementation “junit:junit:4.12”
}

https://spring.io/guides/gs/gradle/

Gradle Hands-on
(taken from https://spring.io/guides/gs/gradle/)

$ vi build.gradle #add the following lines

jar {
 archiveBaseName = ‘gs-gradle’
 archiveVersion = ‘0.1.0’
}

apply plugin: ‘application’
mainClassName = ‘hello.HelloWorld’

$ gradle run

https://spring.io/guides/gs/gradle/

Hermetic Builds

• hermetic: adj. (of a seal or closure) complete and tight.

• A build is hermetic if it can be completed, from the project repository, in a
self-contained manner.

• The build tool itself should be part of the source code.

• External dependencies should be taken care of.

Imhotep

27th Century BCE 

High priest to the sun god, Ra

Thoth

Egyptian god of wisdom, writing,  

science, etc

deified after death

made of a Hollywood movie

“The Mummy”

Universal Pictures

Remake 2001 

“The Mummy”

Original in 1932

Portrayed by Boris Karloff

remake

“Bride of Frankenstein”

1935

also played

Hermes

Greek god of travellers and thieves

Hermes Trismegistus 
Syncretic combination

of Thoth and Hermes

believed to have

invented sealed glass

to create…

Philosopher’s Stone

Harry Potter

and the Philosopher’s Stone

J. K. Rowling, 1997

Gradle Wrapper

• $ gradle wrapper --gradle-version 8.0.2

• $ gradlew build

Summary

• Build should be automated.

• Build should be controlled programatically.

• Build should be hermetic.

