
Shin Yoo

Version Control Systems
CS350 Introduction to Software Engineering

Version Control System

• Manages any changes made to software engineering artifacts (source code,
documents, web sites, etc). Also known as Source Code Management (SCM).

• Why do we need to manage changes?

• We want a safe, secure repository of our projects.

• We may want to go back to previous versions (to roll back mistakes).

• We may have needs for gate-keeping incoming changes.

• We may have to maintain multiple versions of the same system.

Requirement for VCS

• Atomic Updates: We call an operation “atomic” if it is always the case that
either the entire operation takes place, or not, even when the operation is
interrupted in the middle - you do not leave a “Work-In-Progress” state.

• If a developer starts making changes to a file, others should not make
concurrent modifications - otherwise operations become non-atomic.

• One way of ensuring atomicity is to use file locks: once a file is “checked
out” by someone, others cannot modify it. However, lost locks will be a
problem.

Requirements for VCS

• Merging: Unless you implement file locks, multiple changes can be made to the
same file. The first person will be able to save the changes; later ones will not
be able to do so, because the change (the delta) they want to submit is different
(the baseline has bee moved).

• Instead of overwriting, merging will pick up only the different parts, and work
these parts into the new baseline.

• However, conflicts are possible: what if the first change and the second
change both work on the same part of the file? We cannot overwrite, we
cannot accommodate both changes.

• Merging calls for conflict resolution.

Centralized VCS

• Revision Control System (RCS): part of UNIX. Stores the latest version in full
(for faster access), and all previous versions are stored as deltas. Manages
files, not projects. Uses lock mechanism, so only one user can work on a file
at any given moment.

• Concurrent Version System (CVS): GPL improvement of RCS. Client/server
architecture. Many people can work on the same file; however, the server only
accepts changes to the latest stored version (meaning anyone who checked
out files need to periodically update their local copies - conflicts can happen).

• Subversion (SVN): Apache-developed, open source VCS that is mostly
compatible with CVS.

Distributed VCS

• Gets rid of the central server: now everyone stores the full repository,
including all previous changes and entire history of the project.

• This is the most widely used form of VCS now.

Benefits of being distributed

• Can work when offline.

• Most operations are now faster: no need to talk to the server.

• You can keep private changes that you do not want to publish.

• Working copies all become backups.

• Allows more flexible workflows (will see later).

Downsides of being distributed

• Initial checkouts are slower and bigger: you need to move the entire history.

• Additional storage required.

• More security vulnerability: more copies of the project to attack.

git. n. British Informal.  
an unpleasant or contemptible
person.

git
The most widely used DVCS right now

• Developed by Linus Tovalds

• Linux kernel developers used BitKeeper, a proprietary DVCS that provided a
special license to linux kernel developers. After a dispute about contract
violation, BitKeeper decided to stop the free license.

• Tovalds built a DVCS himself so that Linux kernel development can continue.

• Began on 3rd April 2005; announced on 6th April; benchmarked on 29th
April; adopted to maintain Linux kernel 2.6.12 release on 16th June; version
1.0 release on 21st December 2005.

• Current stable version 2.4.0 (13 March 2023)

git
A repository structure

• A directory becomes a git repository when you initialize it with git init

• It will now contain .git hidden directory, inside which git organizes repository
data (history, other configurations, etc).

• The directory itself is the working directory.

git - staging

Working
Directory

Staging
Area

git
Repository

add

commit

checkout

$ git init

// … do some work

$ git add foo.py # adds foo to the staging area

$ git commit -m “first commit”

// realises that you’ve made a mistake

$ git checkout foo.py # brings back the previous version

git - commit history

• Commit ID: an SHA-1 hash of a git commit object file, which contains the
actual diff, as well as other metadata such as commit/author date, committer/
author email, etc

• HEAD: a special index that points to the last effective commit

user: dbr7

id: 81d84f4287eaa3392a4754b8666f8ed00561c96c

comment: Copy bfs.py to make bfs_improved.py file

user: dbr7

id: 21dbd65a804e3078e66f796edf4b462ca2125347

comment: Prevent generating redundant nodes due to odd numbers of epoches and unit

user: ntrolls

id: 6dbd2486b550140d239f890e6ad2abdc960baa7d

comment: implementation of sway for repair

git - clone

• Clone: you copy an existing repository into your local storage.

git clone git@github.com:coinse/…

git - branching

• Creates a different timeline that branches from a specific point (typically current HEAD)

• The next commit will be made under the new branch

• git branch --list gives you the list of all branches.

git branch experiment

main

git commit -m “first experimental commit”

HEAD

git - checkout

• Change the contents of the working directory with those of another branch

git checkout main

HEAD

main

experiment

git - status

Files that have been modified and are already
in the staging area (i.e., they have been added
to the staging area with git add [filename])

Files that have been modified but are not in the
staging area

Files that are not being tracked (i.e., not part of
the repository)

Current branch and the remote branch that

it is tracking

git - remote

• Manages remote repositories

• git remote [-v | --verbose]: list all remote repositories

• git remote add [name] [URL]: adds the repo specific by URL under the given
name

• “origin” is the conventional name given to the upstream repo. If you clone a repo
from GitHub for example, the local cloned repo will point to the GitHub repository as
the upstream with “origin”

• git remote rename [oldname] [name]

• git remote remove [name]

git - push

• When your local branch is one or more commits “ahead” then a remote branch, you
can “push” the additional commits you made.

• Push can fail due to a conflict: you have to then “pull” the changes and push again.

git push origin main

git - pull

• When your local branch is one or more commits “behind” a remote branch, you can
“push” the additional commits you made.

• What if local and remote heads are at different places?

git pull origin main

Conflict

• You pulled the remote when its head was at 1; you created changes, resulting in 2.

• Someone else pushed to origin, resulting in 3.

• Your latest change is between 1 and 2, which cannot be applied to 3 because they have different starting points.

git push origin main

1

1 2

3

Conflict Resolution: Merge
Merge integrates changes made in the other branch.

• Changes in the other branch are merged into the current branch.

• If two change sets do not overlap, merging can be done automatically.

• If they do overlap, you have to manually resolve it.

• Merge leaves a commit.

git merge main

feature

main

*

Merge Resolution
HEAD vs. the other branch: leave only one of them

Conflict Resolution: Rebase
Rebase re-calculates your changes against a new baseline.

• Moves the baseline (i.e., the branching point) and applies the accumulated changes.

• Newly applied changes now have different commit IDs.

• No additional commit; however, conflicts are still possible.

git rebase main

feature

main

* * *

git - fetch

• Your local repo can store information about remote branches: git fetch
updates these to the latest information.

• git pull is in fact two commands combined: git fetch, followed by:

• merge: conflicts are either automatically merged and committed, or you
have to manually resolve

• rebase: no conflicts, so your branch is simply updated

git - log

• Gives you the timeline.

• git log --oneline --graph will give you ascii graph representation.

git - reset

• Moves the HEAD pointer Working
Directory

Staging
Area

git
Repository

add

commit

checkout

HEADindex

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

git - reset
(borrowed from https://git-scm.com/book/ko/v2/Git-도구-Reset-명확히-알고-가기)

https://git-scm.com/book/ko/v2/Git-%EB%8F%84%EA%B5%AC-Reset-%EB%AA%85%ED%99%95%ED%9E%88-%EC%95%8C%EA%B3%A0-%EA%B0%80%EA%B8%B0

HEAD notation
(example from https://git-scm.com/docs/git-rev-parse#_specifying_revisions)

• HEAD~n: -th ancestor from HEAD (vertical)

• HEAD^n: -th immediate parent of HEAD when HEAD has multiple parents
(horizontal)

n

n

G H I J
 \ / \ /
 D E F
 \ | / \
 \ | / |
 \|/ |
 B C
 \ /
 \ /
 A

A = = A^0
B = A^ = A^1 = A~1
C = = A^2
D = A^^ = A^1^1 = A~2
E = B^2 = A^^2
F = B^3 = A^^3
G = A^^^ = A^1^1^1 = A~3
H = D^2 = B^^2 = A^^^2 = A~2^2
I = F^ = B^3^ = A^^3^
J = F^2 = B^3^2 = A^^3^2

https://git-scm.com/docs/git-rev-parse#_specifying_revisions

git - blame

• Identifies commits that touched specific parts of a file.

• git blame [filename]: shows all commits that modified this file.

• git blame [filename] -L <start>, <end>: shows all commits that
modified lines between <start> and <end>

git - bisect

• Allows you to pinpoint the moment (=the commit) that something bad happened
for the first time.

• First, initiate the bisection process: git bisect start

• Second, mark the bad commit e.g., the current commit: git bisect bad

• Third, mark the last good commit that you know of: git bisect good <id>

• Now git will essentially perform binary search between good and bad, and
check-out a commit that you need to mark either good or bad

• Good/bad can be anything: code inspection, test results, etc…

Different Workflows Using Git

• Git allows us to have branches, as well as to push/pull changes.

• You can implement different workflows using git as the VCS tool.

• Major workflows

• GitFlow

• GitHub Flow

• Trunk-based Development

Vincent Driessen, 2010

• Trunk (main, master) tags release
versions.

• Main development branch is
where code changes are pushed.

• Each feature is developed in its
own branch, and merged with
the development branch.

• Release/hotfix branches for only
those type of changes.

GitFlow

https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Vincent Driessen, 2010

• Uses git branches to their
maximum potential

• However, no single branch
available for continuous
integration/testing

• Can run into incredibly messy
merge conflicts if not careful

GitFlow

https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Simplified version of GitFlow

• Proposed by GitHub

• Each new feature is developed in
its own feature branch.

• Once ready, a Pull Request is
made to the main branch.

• PR is reviewed, the merged.

• Release is done from the main
branch.

GitHub Flow

https://github.com/SvanBoxel/release-based-workflow/issues/1

https://github.com/SvanBoxel/release-based-workflow/issues/1

Trunk Based Development

• Developers work on features on separate branches, but…

• Everyone has to merge to the main branch at least once a day.

• Main branch should always be releasable!

main

Feature A

Feature B

Feature Flag

• How do you develop a feature that may take more than a day?

• Add a flag that turns off the feature, and implement under the disabled flag.

• The main trunk still continues to pass, as the new feature is disabled.

• On the day that you are ready, turn on the feature and merge :)

main

Feature A

Feature B

Trunk Based Development
Why do this?

• Merges are much easier, as we only merge small changes.

• Main branch is more readily available for CI/CD.

• May require more experienced developers.

main

Feature A

Feature B

Summary

• VCS, especially DVCS, is a foundation of modern day SE practices.

• You really, really need to be familiar with basics of git.

• It is like a big Swiss army knife: so many different features, so many
different ways of doing the same thing.

• Still, basic branching/merging operations should be your second nature.

• Assignment 3 will require you to be reasonably comfortable with the basics :)

