
Shin Yoo

Design Patterns
CS350 Introduction to Software Engineering

(for some reason, it is really
difficult NOT to talk about
architecture in CS350…)

1936 ~ 2022

• British-American Architect /
Design Theorist

• Author of “A Pattern Language:
Towns, Buildings, Construction”,
along with co-authors Sara
Ishikawa, Murray Silverstein,
Max Jacobson, Ingrid Fiksdahl-
King, and Shlomo Angel.

Christopher Alexander

Mark Domains, “Design Patterns Aren’t” (https://perl.plover.com/yak/design/)

“Suppose you want to design a college campus. You must delegate
some of the design to the students and professors, otherwise the
Physics building won't work well for the physics people. No architect
knows enough about about what physics people need to do it all
themselves. But you can't delegate the design of every room to its
occupants, because then you'll get a giant pile of rubble.

How can you distribute responsibility for design through all levels of
a large hierarchy, while still maintaining consistency and harmony of
overall design? This is the architectural design problem Alexander is
trying to solve, but it's also a fundamental problem of computer
systems development.”

https://perl.plover.com/yak/design/

“A Pattern Language”

• Alexander breaks down common elements of towns and buildings.

• The common elements become the entries of this “dictionary”.

• For example, at the beginning of the section for buildings, we have:

• 95. Building Complex

• 96. Number of Stories

• 97. Shielded Parking

• 98. Circulation Realms

• 99. Main Building

“A Pattern Language”

• “Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice.”

• “(…) we have tried, in each solution, to capture the invariant property
common to all places which succeed in solving the problem. 
 
But of course, we have not always succeeded. The solution we have given
to these problems vary in significance. Some are more true, more profound,
more certain, than others. To show this clearly we have marked every
pattern, in the text itself, with two asterisks, or one asterisk, or no asterisk.”

“A Pattern Language”

• “In the patterns marked with two asterisks, we believe that we have
succeeded in stating a true invariant: in short, that the solution we have stated
summarises a property common to all possible ways of solving the stated
problem.”

• “In the patterns marked with one asterisk, we believe that we have made
some progress towards identifying such an invariant: but that with careful
work it will certainly be possible to improve on the solution.”

• “In the patterns without an asterisk, we are certain that we have not
succeeded in defining a true invariant — that, on the contrary, there are
certainly ways of solving the problem different from the one which we have
given.”

Accessible Green**: people need open places to go to; when they are close they use them. But if the greens are more than three minutes away, the
distance overwhelm the need. Therefore, build one open public green within three minutes’ walk - about 750 feet - of every house and workplace. This
means that the greens need to be uniformly scattered at 1500-foot intervals, throughout the city. Make the greens at least 150 feet across, and at least

60,000 square feet in area.

Children in the City: If children are not able to explore the whole of the adult world round about them, they cannot become adults. But modern cities are
so dangerous that children cannot be allowed to explore them freely. Therefore, as part of the network of bike paths, develop one system of paths that is
extra safe - entirely separate from automobiles, with lights and bridges at the crossings, with homes and shops along it, so that there are always many

eyes on the path.

Arcades**: Arcades — covered walkways at the edge of buildings, which are partly inside, partly outside — play a vital role in the way that people
interact with buildings. Therefore, wherever paths run along the edge of buildings, build arcades, and use the arcades, above all, to connect up the

buildings to one another, so that a person can walk from place to place under the cover of the arcades.

What does this pattern language achieve?

• A set of common design elements AND their names, so that people know
what to make decisions about.

• A proposed guidelines (invariants) on the essential property of such design
elements, so that good design is achieved.

• Can we do something similar to software design?

• Structural Patterns that are commonly used
to solve “design problems”

• Algorithms are, in a way, common
computational patterns for specific
functionality (sorting, storing data, etc).

• Design Patterns are common structural
patterns for organizing your components.

• Discussed since 70s; made popular by the
“Gang of Four”: Eric Gamma, Richard Helm,
Ralph Johnson, and John Vissildes via the
following book:

• Design Patterns: Elements of Reusable
Object-Oriented Software (1995)

Design Patterns

Patterns that we will browse

• Creational Patterns: how should you create objects?

• Structural Patterns: how do you assemble objects while remaining flexible?

• Behavioral Patterns: how do you distribute tasks to objects to implement
algorithms?

Creational Patterns: Factory

• Problem: if you create instances of a class directly using its constructor in
multiple locations, you increase the coupling between all these locations and
the constructor. Later, if you need to alter the type of objects being created,
the high coupling makes the change difficult.

• For example, you built a software for managing a cafe, which initially only sold
coffees.

- type: CoffeeType
- isCold: Bool

Coffee

+ new(): Coffee

Creational Patterns: Factory

• Problem: if you create instances of a class directly using its constructor in
multiple locations, you increase the coupling between all these locations and
the constructor. Later, if you need to alter the type of objects being created,
the high coupling makes the change difficult.

• For example, you built a software for managing a cafe, which initially only sold
coffees.

• Later, you decide to sell teas too??
- type: CoffeeType
- isCold: Bool

Coffee

+ new(): Coffee

Creational Patterns: Factory

• Solution: create a special Factory method, which will take the required inputs
(such as “coffee or tea”) and return a valid subclass.

• You always use the factory method to create instances of subclasses.

• Limitations: only works when various objects you want to create has a
common base class/interface.

- type: CoffeeType
- isCold: Bool

Coffee

+ new(): Coffee

- type: TeaType
- isCold: Bool

Tea

+ new(): Tea

Beverage

+ createBeverage(): Beverage

Creational Patterns: Factory

…

Creator

+ createProduct(): Product

+ DoSomething()

<interface>
Product

…

ConcreteProductA

…

ConcreteProductB

…

ConcreteCreatorA

+createProduct(): Product

…

ConcreteCreatorB

CreateProduct(): Product

Creational Patterns: Abstract Factory

• What if the whole “line-up” of Product A, B, and C can be varied, but the
operations you perform on products are the same?

• Your cafe chain sells sets of coffees and teas in Korea, but a different line-
up of coffees and teas in Italy.

• What you do to Beverage objects remain the same, regardless of the
location of cafes.

• We need different factories for different lineups.

Creational Patterns: Abstract Factory

+ createProductA():ProductA
+ createProductB():ProductB

<interface>
AbstractFactory

…

ConcreteFactory1

+ createProductA():ProductA
+ createProductB():ProductB

…

ConcreteFactoryr2

+ createProductA():ProductA
+ createProductB():ProductB

- factory:AbstractFactory

Client

+ Client(f: AbstractFactory)
+ someOperation0

…

ConcreteProductA1

…

…

ConcreteProductB1

…

…

ConcreteProductA2

…

…

ConcreteProductB2

…

…

AbstractProductA

…

…

AbstractProductB

…

Creational Patterns: Builder

• Problem: the object you want to create requires a long list of parameters to
be initialised. Further, depending on the combinations in these parameters,
you get slightly different objects.

• Different subclass for different combinations of parameters: complicated
type hierarchy, difficult to modify later.

• A giant constructor with all possible parameters: many parameters will be
left unused

Creational Patterns: Builder
The problem with long constructor calls

…

Coffee

+ Coffee(beanType, isHot,
addWater, numIceCubes,
addSugar, add CocoaPowder,
addCinnamonPowder,
addCaramelSyrup, …)new Coffee(robusta, true, false, 0, null, null, null, null..) new Coffee(arabica, false, true, 10, null, null, null, 10..)

Creational Patterns: Builder

• Extract the object construction to another class; break down the constructor
argument into separate steps.

…

CoffeeBuilder

+ setBeanType()
+ setTemp()
+ addWater()
+ addIceCubes()
+ addSugar()
+ addCocoaPowder()
+ addCinnamonPowder()
+ addCaramelSyrup()
…

…

Coffee

…

Creational Patterns: Builder
You can even create specialized builders for sub-categories

- builder: Builder

Director

+ Director(builder)
+ changeBuilder(builder)
+ make(type)

+reset()
+buildStepA()
+buildStepB()
+buildStepC()
…

<interface>
Builder

…

ConcreteBuilder2

+reset()
+buildStepA()
+buildStepB()
+buildStepC()
…
+getResult(): Product2

Product1 Product2

…

ConcreteBuilder1

+reset()
+buildStepA()
+buildStepB()
+buildStepC()
…
+getResult(): Product1

b = new ConcreteBuilder1();
d = new Director(b);
d.make();
Product1 p = b.getResult();

A “Director” that knows how to build
(=make) a specific type of product
using a builder can be added.

Creational Patterns: Singleton

• Problem: you want to ensure that a class only ever has a single instance.

• A class that controls the access to a single shared resource (e.g., DB) or
contains a single copy of information that needs to be accessed globally
(think of global variables)

- instance: Singleton

Singleton

- Singleton()
+ getInstance(): Singleton

if (instance==null){
 this.instance = new Singleton();
}
return singleton;

Structural Patterns: Composite

• Problem: you need to manipulate both individual objects and groups of them
- think of grouped shapes in PowerPoint/Keynote. Any operation we can
perform to individual objects (e.g., resize) should also work for the composite
object. How do we do this efficiently?

Structural Patterns: Composite

• Operations are designed so that
anything done to a composite can be
delegated into individual children.

Client

+operation()

<interface>
Component

- children: Component[]

Composite

+add(c: Component)
+remove(c: Component)
+getChildren(): Component[]
+operation()

…

SingleItem

+operation()

Composite operations
are all delegated

Structural Patterns: Facade

• Problem: your system depends on a complex, behind-the-scene libraries and
frameworks. However, directly connecting your business logic to multiple
libraries and frameworks will introduce unnecessary coupling.

• Comprehension becomes more challenging.

• Changing one of the libraries later becomes more difficult.

• Implement a facade (front/face of a building) that hides the complexity

Structural Patterns: Facade

Client
- linksToSubSystems
- optionalFacade

Facade

+operationA()
+operationB()
+operationC()

…

AdditionalFacade

…
+operationZ()

SubSystemA

SubSystemB
SubSystemC

API1
API2

Structural Patterns: Decorator (Wrapper)

• Problem: you need to modify the behaviour of a specific class in a number of
ways. However, if you implement it via inheritance, you end up with too many
subclasses.

Notifier

FacebookNotifier EmailNotifier SMSNotifierTwitterNotifier

TwitterFacebookNotifier TwitterEmailNotifier TwitterSMSNotifier

FacebookEmailNotifier FacebookSMSNotifier EmailSMSNotifier
🫠

Structural Patterns: Decorator (Wrapper)

• In general, handling variation always with inheritance is cumbersome; instead,
try using aggregation (i.e., chaining objects with variations)+ delegation (call
each of the chained objects).

• Each object “wraps” another object that performs a similar operation: before/
after calling the target method, each object does a little bit of its own thing.

Structural Patterns: Decorator (Wrapper)

Client

+operation()

<interface>
Component

…

ConcreteComponent

+operation()

-wrappee: Component

BaseDecorator

+BaseDecorator(c: Component)
+operation()

…

ConcreteDecoratorA

+operation()

…

ConcreteDecoratorB

+operation()

…

ConcreteDecoratorC

+operation()

a = ConcreteComponent();
b = ConcreteDecoratorA(a);
c = ConcreteDecoratorB(b);
d = ConcreteDecoratorC(c);
d.operation();

Behavioural Patterns: Template

• Problem: you have various classes that perform variations of the same task.

…

PDFDataMiner

+ process(file)

…

CSVDataMiner

+ process(file)

…

XMLDataMiner

+ process(file)

f = open(file);
raw_data = readPDF(f);
data = parsePDFData(raw_data);
result = analyse(data);
report(result);
close(f);

f = open(file);
raw_data = readCSV(f);
data = parseCSVData(raw_data);
result = analyse(data);
report(result);
close(f);

f = open(file);
raw_data = readXML(f);
data = parseXMLData(raw_data);
result = analyse(data);
report(result);
close(f);

Behavioural Patterns: Template
Subclasses have to override what is needed only

…

AbstractClass

+ templateMethod()
+ step1()
+ step2()
+ step3()
…

…

ConcreteClass1

+ step3()
+ step4()

…

ConcreteClass2

+ step2()
+ step4()
+ step5()
…

Behavioural Patterns: Iterator

• You should be able to iterate over a collection, without being concerned with
the lower level data structure.

• If you decide that your underlying data structure should change from a
linked list to a binary tree, your algorithm should not be affected.

Behavioural Patterns: Iterator

-collection: ConcreteCollection
-iterationState

ConcreteIterator

+ConcreteIterator(c: ConcreteCollection)
+next()
+hasMore(): Bool

…

ConcreteCollection

+createIterator(): Iterator

+next()
+hasMore(): Bool

<interface>
Iterator

+createIterator(): Iterator

<interface>
IterableCollection

Client

ArrayList<String> c = ...

Iterator<String> it = c.getIterator();
while(it.hasNext()){
 System.out.println(it.next());
}

Behavioural Patterns: Visitor

• Problem: you want to separate a data structure and an algorithm that
operates on the data structure.

• For example, you have parsed your source code into an AST, which is a
tree. Now you want to analyse or manipulate the tree using an algorithm.

• Do you implement what needs to be done per node type into the class that
represents the tree nodes?

Behavioural Patterns: Visitor

+ visit(e: ElementA)
+ visit(e: ElementB)

<interface>
Visitor

+operation()

<interface>
Element

…

ConcreteElementA

+featureA()
+accept(v: Visitor)

…

ConcreteElementB

+featureB()
+accept(v: Visitor)

…

ConcreteVisitor

+visit(e: ElementA)
+visit(e: ElementB)

v.visit(this);

left = node.getLeftChild();
left.accept(this);

some_action(node);

right = node.getRightChild();
right.accept(this)

Behavioural Patterns: Command

• Problem: you are implementing GUI - each GUI element should invoke the
corresponding business logic. However, if you add the corresponding logic to
event handler, you duplicate a lot of code.

• “Saving the file” can be invoked from a short-cut key (KeyEventHandler), a
Save button in the menu-bar (OnClick event handler of the button class),
and a menu item (OnClick event handler of the menu item).

Behavioural Patterns: Command
Client

-command

Invoker

+setCommand(c: Command)
+executeCommand()

+ execute()

<interface>
Command

…

Receiver

+operation(a, b, c)

-receiver
-params

ConcreteCommand1

+Command1(receiver)
+execute()

-receiver
-params

ConcreteCommand2

+Command2(receiver, params)
+execute()

copy = new CopyCommand(…)
buttonCopy.setCommand(copy)

public void execute(){
 receiver.opeartion(params);
}

Behavioural Patterns: Observer

• Problem: how do you wait for an event, so that you can react?

• A naive approach would be polling, i.e., regularly checking whether the
event has happened.

• This is 1) mostly wasteful, and 2) requires a timer mechanism.

• Instead, the source of the event becomes a “Publisher”, and the interested
parties become “Subscribers”. You register your interest at the beginning; if
something happens, the publisher notifies the subscribers.

• Can we describe this structure in UML?

Behavioural Patterns: Observer

-subscribers: Subscriber[]

Publisher

+subscribe(s: Subscriber)
+unsubscribe(s: Subscriber)
+notifySubscribers()
…

+update(event)

<interface>
Subscriber

…

ConcreteSubscriber

+update(event)

s = new ConcreteSubscriber();
publisher.subscribe(s)

// something new happens
foreach(s in subscribers){
 s.update(this);
}

Essence of Design Patterns

• These are Object Oriented Best Practices, in some sense.

• There are clear “patterns” (pun intended) here: caution against excessive
subclass hierarchy, delegation by creating a third-party object, reducing
coupling, increasing cohesion…

• For those relatively inexperienced in design level thinking, these guidelines
do make you think about the structures in your software.

• The vision of Alexander is that we will have a common language (patterns)
with which we will examine the design problems: while it gives the invariant
properties, it does not suggest actual blueprints.

• Critiques of GoF/Design Patterns argue that, instead of “thinking” about these
design problems, the book and the patterns simply reduced the problems into
copying/pasting a lot of boilerplates.

• Another common criticism is that some of the patterns are only necessary
when the programming language is not powerful enough.

Critiques of Design Patterns

Summary

• Design patterns are an attempt to extract repeatedly used common structures
from OOP design: there are definitely recurring problems, and there are also
good solutions for them.

• Good solutions/designs may share some patterns. However, using those
patterns does not automatically result in good designs.

• “If you are holding a hammer, everything looks like a nail”

• Again: it is the ideas and thoughts that count, not the fixed rules.

