
Shin Yoo

Software Architecture & Design
CS350 Introduction to Software Engineering



https://en.wikipedia.org/wiki/Architecture

https://en.wikipedia.org/wiki/Architecture


Software Architecture

• How are we going to organize the parts of the software system?


• What are the parts?


• What is the structure that puts the parts together?


• These are the questions that sit between requirements (higher level, abstract 
goals) and implementation (low level, concrete artifacts).


• Individual components implement functional requirements; overall 
architecture has much greater impact on non-functional requirements such as 
performance, robustness, maintainability, etc.



Can this be taught/learnt?

• Going from a set of requirements to an architectural design involves specific 
domain, context, and other circumstances.


• Where does the general principle ends and the specific domain starts?


• “Computer science education cannot make anyone an expert programmer 
any more than studying brushes and pigments can make somebody an 
expert painter.” - Eric Raymend


• We will do our best to cover the generic now, and continue to do our best to 
learn from our experiences :



Questions about Architectural Design
(taken from Sommerville, 9th ed.)

• Is there a generic application architecture that can be the template?


• What will be the fundamental approach used to structure the system?


• How will the structural components in the system be decomposed into sub-
components?


• What architectural organization is best for delivering the non-functional 
requirements of the system?


• How should the architecture be documented?


• How will the system be distributed across hardware cores and processors?



Important Viewpoints
(taken from Sommerville, 9th ed.)

• Logical View: reveals key abstractions in the system as objects or classes - are 
system requirements related to these objects?


• Process View: looks at how the system is composed of interacting processes - 
will we have sufficient performance?


• Development View: looks at the way the system can be decomposed into 
smaller components that can be implemented - are they feasible, and can they 
be handled by the development team?


• Physical View: identifies system hardware, and looks at the way software 
components are distributed across processors - can they be deployed and 
maintained?



Architecture vs. (Interior) Design

• Architecture: which house do I build?


• number of floors, number and type of rooms, number of restrooms, location 
of kitchen…


• Design: how do I build each section?


• materials for floor, color of wall, lighting fixture, furniture…



SW Architecture vs. SW Design

• Architecture: what is being developed?


• types of components, how they communicate with each other, how storage 
is provided…


• Design: how are the components developed?


• which classes, API design, data modeling…



Architectural Patterns

• Certain design knowledges about software architecture can be generalized, 
abstracted, and reused.


• They are reused because they are known to solve some common design 
issues, such as separation of concerns.


• They are useful templates for you to use when you want to break down the 
system into smaller components.



MVC (Model-View-Controller)

• When there are stored data (model), its 
representation (view), and user actions 
(controller), MVC can be used to manage 
the interactions between them


• Model is often a database or some other 
persistence layer


• View is often a GUI


• Controller is often the application/
business logic
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Layered Architecture

• Organise system functionality into layers, each of which only depends on the 
single underlying layer.


• Separation of concern is achieved with different layers.


• Each layer can be one step in incremental development.
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Repository Architecture

• When there is a single repository of data, on which various other components 
depend


• Components only communicate with each other using the repository (i.e., 
by changing the state that is recorded in the repository)
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Client/Server Architecture

• A distributed architecture that describes a specific runtime organization


• A set of servers, providing services to other components;


• A set of clients, using the services offered by the servers;


• A network infrastructure, connecting servers and clients
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Pipe Architecture

• Entire system can be broken down different transformations being applied to 
the incoming input (remember Unix pipeline example earlier?).


• Ideal to scenarios with little user interaction.
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Software Product Line Architecture

• Software Product Line: a set of software systems that share a common 
feature set.


• A specific form of it is now everywhere.


• But it can be much more complicated.



Feature Model

• Feature Models (FMs) are systematic models that capture the commonalities 
as well as variabilities in SPL Architectures.


• Features are either mandatory or optional


• Choices are either alternatives (1 out of N) or ORs (M out of N, M <= N)


• Additional constraints between features (e.g., camera features in a mobile 
phone requires high resolution screen)



Feature Model Diagram: An Example
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Design vs. Architecture

• Architecture defines the big picture of what you want to build.


• Design concerns how you implement the big picture in more detail.


• Think of building a house (=architecture) vs. interior design (=design)


• Architectural decisions: how to lay the foundation, which orientation, the 
overall shape of the house, which room goes where, etc


• Design decisions: how to make each room functional, in which style, etc


• They do bleed into each other in the middle.



Design Patterns

• Commonly & frequently (re-)used patterns of code: think of architectural 
patterns, but much more detailed.


• Knowing these patterns may allow you to easily break down a big picture into 
components you need to implement.


• We will cover some of the popular design patterns in the next lecture.


