Software Architecture & Design

CS350 Introduction to Software Engineering

Shin Yoo

Architecture A 180 languages v

Article Talk Read View source View history

From Wikipedia, the free encyclopedia 6

For the profession, see Architect. For other uses, see Architecture (disambiguation).

Architecture is the art and technique of designing and building, as distinguished from the skills
associated with construction.®! It is both the process and the product of sketching, conceiving,
4l planning, designing, and constructing buildings or other structures.!®! The term comes from
Latin architectura; from Ancient Greek apxItéktwv (arkhitékton) 'architect’; from apxi- (arkhi- , |
) 'chief', and TékTwv (tékton) 'creator'. Architectural works, in the material form of buildings, are ESs f ezt L) e
often perceived as cultural symbols and as works of art. Historical civilizations are often S e o BT T e il
identified with their surviving architectural achievements.'!

The practice, which began in the prehistoric era, has been used as a way of expressing culture Tameey | IEUHE e
for civilizations on all seven continents.!”! For this reason, architecture is considered to be a ’ '
form of art. Texts on architecture have been written since ancient times. The earliest surviving e = 0 _
. L : . i in &

text on architectural theories is the 1st century AD treatise De architectura by the Roman In adding the dome to the Florence Cathedral (ltaly) in

, , _ , o . o - the early 15th century, the architect Filippo Brunelleschi not
architect Vitruvius, according to whom a good building embodies firmitas, utilitas, and venustas only transformed the building and the city, but also the role
(durability, utility, and beauty). Centuries later, Leon Battista Alberti developed his ideas further, and status of the architect.['ll?]
seeing beauty as an objective quality of buildings to be found in their proportions. Giorgio Vasari

wrote Lives of the Most Excellent Painters, Sculptors, and Architects and put forward the idea of style in the Western arts in the 16th century. In the

B s . » -

19th century, Louis Sullivan declared that "form follows function". "Function" began to replace the classical "utility" and was understood to include not
only practical but also aesthetic, psychological and cultural dimensions. The idea of sustainable architecture was introduced in the late 20th century.

https://en.wikipedia.org/wiki/Architecture

https://en.wikipedia.org/wiki/Architecture

Software Architecture

 How are we going to organize the parts of the software system?

 What are the parts?
 What is the structure that puts the parts together?

 These are the questions that sit between requirements (higher level, abstract
goals) and implementation (low level, concrete artifacts).

* |Individual components implement functional requirements; overall

architecture has much greater impact on non-functional requirements such as
performance, robustness, maintainabillity, etc.

Can this be taught/learnt?

* (Going from a set of requirements to an architectural design involves specific
domain, context, and other circumstances.

 Where does the general principle ends and the specific domain starts?

o “Computer science education cannot make anyone an expert programmer
any more than studying brushes and pigments can make somebody an
expert painter.” - Eric Raymend

* We will do our best to cover the generic now, and continue to do our best to
learn from our experiences :

Questions about Architectural Design

(taken from Sommerville, 9th ed.)

* |s there a generic application architecture that can be the template?
 What will be the fundamental approach used to structure the system?

 How will the structural components in the system be decomposed into sub-
components?

 What architectural organization is best for delivering the non-functional
requirements of the system?

e How should the architecture be documented?

 How will the system be distributed across hardware cores and processors”?

Important Viewpoints

(taken from Sommerville, 9th ed.)

* Logical View: reveals key abstractions in the system as objects or classes - are
system requirements related to these objects?

* Process View: looks at how the system is composed of interacting processes -
will we have sufficient performance?

* Development View: looks at the way the system can be decomposed into
smaller components that can be implemented - are they feasible, and can they
be handled by the development team?

* Physical View: identifies system hardware, and looks at the way software
components are distributed across processors - can they be deployed and
maintained??

Architecture vs. (Interior) Design

 Architecture: which house do | build?

 number of floors, number and type of rooms, number of restrooms, location
of kitchen...

* Design: how do | build each section?

 materials for floor, color of wall, lighting fixture, furniture...

SW Architecture vs. SW Design

* Architecture: what is being developed?

* types of components, how they communicate with each other, how storage
IS provided...

* Design: how are the components developed?

* which classes, APl design, data modeling...

Architectural Patterns

* Certain design knowledges about software architecture can be generalized,
abstracted, and reused.

 They are reused because they are known to solve some common design
ISsues, such as separation of concerns.

* They are useful templates for you to use when you want to break down the
system into smaller components.

MVC (Model-View-Controller)

 When there are stored data (model), its
representation (view), and user actions
(controller), MVC can be used to manage User Events
the Interactions between them l

Controller View Selection > View
» Model is often a database or some other """ .
" . Ch
persistence layer Selects views orange {opdes
. View is often a GUI ——
State Model
» Controller is often the application/ whenge Stores application
. _ state State
bUSIneSS Ioglc g Notifies view of = Query

state changes

Layered Architecture

* Organise system functionality into layers, each of which only depends on the
single underlying layer.

* Separation of concern is achieved with different layers.

 Each layer can be one step in incremental development.

User Interface

Authentication

Core business logic/application functionality
System Ultilities

System Layer (OS Support, DBMS)

Repository Architecture

 When there is a single repository of data, on which various other components
depend

 Components only communicate with each other using the repository (i.e.,
by changing the state that is recorded in the repository)

Jave

Editors Python
UML Editors

~ 1 7

Project
Repository

< f \
Report Document

Generator Browser
Test Runner

Client/Server Architecture

* A distributed architecture that describes a specific runtime organization
* A set of servers, providing services to other components;
* A set of clients, using the services offered by the servers;

* A network infrastructure, connecting servers and clients

Client 1 Client 2 Client 3 Client 4

Pipe Architecture

* Entire system can be broken down different transformations being applied to
the incoming input (remember Unix pipeline example earlier?).

e |deal to scenarios with little user interaction.

. Code
Sourceé |—»| Scanner (—»| Parser —| Analyser —>| Optimizer |—> Gonerator Executable

_/ _/

Software Product Line Architecture

e Software
feature se

* A specific

e But it can

Q Search or jump to...

Pull requests Issues Codespaces Marketplace Explore

Get the complete developer platform.

Free

The basics for individuals
and organizations

per month
forever

Create a free organization

Unlimited public/private repositories
Automatic security and version updates

2,000 CI/CD minutes/month

Free for public repositories

500MB of Packages storage

Free for public repositories

120 core-hours Codespaces compute/month
For your personal account

15GB of Codespaces storage
For your personal account

New issues & projects (in limited beta)

Community support

GitHub Copilot Access

How often do you want to pay?

Monthly [Yearly © Get1month free]

MOST POPULAR

Team

Advanced collaboration for
individuals and organizations

43,67

per user/month
for the first 12 months™

Continue with Team ~

< Everythingincluded in Free, plus...

> Access to GitHub Codespaces

> Protected branches

> Multiple reviewers in pull requests
> Draft pull requests

> Code owners

> Required reviewers

> Pages and Wikis

> Environment deployment branches and
secrets

> 3,000 CI/CD minutes/month

Free for public repositories

> 2GB of Packages storage

Enterprise

Security, compliance,
and flexible deployment

21°19.25

per user/month
for the first 12 months™

Start a free trial Contact Sales

¢« Everything included in Team, plus...

> Enterprise Managed Users
> User provisioning through SCIM

> Enterprise Account to centrally manage
multiple organizations

> Environment protection rules
> Audit Log API
> SO0C1,S0C2, type 2 reports annually

> FedRAMP Tailored Authority to Operate
(ATO)

> SAML single sign-on
> Advanced auditing

> GitHub Connect

ImMmon

Feature Model

 Feature Models (FMs) are systematic models that capture the commonalities
as well as variabillities in SPL Architectures.

 Features are either mandatory or optional
 Choices are either alternatives (1 out of N) or ORs (M out of N, M <= N)

» Additional constraints between features (e.g., camera features in a mobile
phone requires high resolution screen)

Feature Model Diagram: An Example

Calls

Media

/.

Mobile Phone
GPS Screen
| m
| 4
Basic Colour High-Res

Camera

Mandatory
Optional

Excludes

Requires

‘ OR G Alternatives

MP3

Design vs. Architecture

* Architecture defines the big picture of what you want to build.
* Design concerns how you implement the big picture in more detalil.
* Think of building a house (=architecture) vs. interior design (=design)

* Architectural decisions: how to lay the foundation, which orientation, the
overall shape of the house, which room goes where, etc

* Design decisions: how to make each room functional, in which style, etc

 They do bleed into each other in the middle.

Design Patterns

« Commonly & frequently (re-)used patterns of code: think of architectural
patterns, but much more detailed.

 Knowing these patterns may allow you to easily break down a big picture into
components you need to implement.

* We will cover some of the popular design patterns in the next lecture.

