
Shin Yoo

Software Architecture & Design
CS350 Introduction to Software Engineering



https://en.wikipedia.org/wiki/Architecture

https://en.wikipedia.org/wiki/Architecture


Software Architecture

• How are we going to organize the parts of the software system?


• What are the parts?


• What is the structure that puts the parts together?


• These are the questions that sit between requirements (higher level, abstract 
goals) and implementation (low level, concrete artifacts).


• Individual components implement functional requirements; overall 
architecture has much greater impact on non-functional requirements such as 
performance, robustness, maintainability, etc.



Can this be taught/learnt?

• Going from a set of requirements to an architectural design involves specific 
domain, context, and other circumstances.


• Where does the general principle ends and the specific domain starts?


• “Computer science education cannot make anyone an expert programmer 
any more than studying brushes and pigments can make somebody an 
expert painter.” - Eric Raymend


• We will do our best to cover the generic now, and continue to do our best to 
learn from our experiences :



Questions about Architectural Design
(taken from Sommerville, 9th ed.)

• Is there a generic application architecture that can be the template?


• What will be the fundamental approach used to structure the system?


• How will the structural components in the system be decomposed into sub-
components?


• What architectural organization is best for delivering the non-functional 
requirements of the system?


• How should the architecture be documented?


• How will the system be distributed across hardware cores and processors?



Important Viewpoints
(taken from Sommerville, 9th ed.)

• Logical View: reveals key abstractions in the system as objects or classes - are 
system requirements related to these objects?


• Process View: looks at how the system is composed of interacting processes - 
will we have sufficient performance?


• Development View: looks at the way the system can be decomposed into 
smaller components that can be implemented - are they feasible, and can they 
be handled by the development team?


• Physical View: identifies system hardware, and looks at the way software 
components are distributed across processors - can they be deployed and 
maintained?



Architecture vs. (Interior) Design

• Architecture: which house do I build?


• number of floors, number and type of rooms, number of restrooms, location 
of kitchen…


• Design: how do I build each section?


• materials for floor, color of wall, lighting fixture, furniture…



SW Architecture vs. SW Design

• Architecture: what is being developed?


• types of components, how they communicate with each other, how storage 
is provided…


• Design: how are the components developed?


• which classes, API design, data modeling…



Architectural Patterns

• Certain design knowledges about software architecture can be generalized, 
abstracted, and reused.


• They are reused because they are known to solve some common design 
issues, such as separation of concerns.


• They are useful templates for you to use when you want to break down the 
system into smaller components.



MVC (Model-View-Controller)

• When there are stored data (model), its 
representation (view), and user actions 
(controller), MVC can be used to manage 
the interactions between them


• Model is often a database or some other 
persistence layer


• View is often a GUI


• Controller is often the application/
business logic

Maps user actions 
to model updates
Selects views

Controller

Renders model
Requests model 
updates
Sends user events 
to controller

View

Stores application 
state
Notifies view of 
state changes

Model

View Selection

User Events

Change
Notification

State
Query

State
Change



Layered Architecture

• Organise system functionality into layers, each of which only depends on the 
single underlying layer.


• Separation of concern is achieved with different layers.


• Each layer can be one step in incremental development.

System Layer (OS Support, DBMS)

Core business logic/application functionality
System Utilities

Authentication

User Interface



Repository Architecture

• When there is a single repository of data, on which various other components 
depend


• Components only communicate with each other using the repository (i.e., 
by changing the state that is recorded in the repository)

Project 
Repository

UML 
Editors

Jave
Editors Python

Editors

Test Runner

Document
Browser

Report 
Generator



Client/Server Architecture

• A distributed architecture that describes a specific runtime organization


• A set of servers, providing services to other components;


• A set of clients, using the services offered by the servers;


• A network infrastructure, connecting servers and clients

Internet

Client 1 Client 2 Client 3 Client 4

Catalog 
Server Video Server Photo Server

Web 
Frontend

Server



Pipe Architecture

• Entire system can be broken down different transformations being applied to 
the incoming input (remember Unix pipeline example earlier?).


• Ideal to scenarios with little user interaction.

Scanner Parser Analyser Optimizer Code 
Generator

Source Executable



Software Product Line Architecture

• Software Product Line: a set of software systems that share a common 
feature set.


• A specific form of it is now everywhere.


• But it can be much more complicated.



Feature Model

• Feature Models (FMs) are systematic models that capture the commonalities 
as well as variabilities in SPL Architectures.


• Features are either mandatory or optional


• Choices are either alternatives (1 out of N) or ORs (M out of N, M <= N)


• Additional constraints between features (e.g., camera features in a mobile 
phone requires high resolution screen)



Feature Model Diagram: An Example

Mobile Phone

ScreenGPSCalls

Basic MP3Colour High-Res Camera

Media

Mandatory
Optional
Excludes

Requires

OR Alternatives



Design vs. Architecture

• Architecture defines the big picture of what you want to build.


• Design concerns how you implement the big picture in more detail.


• Think of building a house (=architecture) vs. interior design (=design)


• Architectural decisions: how to lay the foundation, which orientation, the 
overall shape of the house, which room goes where, etc


• Design decisions: how to make each room functional, in which style, etc


• They do bleed into each other in the middle.



Design Patterns

• Commonly & frequently (re-)used patterns of code: think of architectural 
patterns, but much more detailed.


• Knowing these patterns may allow you to easily break down a big picture into 
components you need to implement.


• We will cover some of the popular design patterns in the next lecture.


