
Unified Modeling Language (UML)

CS350 Introduction to Software Engineering

Reused under permission from Software Engineering Lab (SELab), KAIST
Originally developed by Dr. Youngmin Baek

Outline 1. Software System Modeling
2. Unified Modeling Language (UML)

A. Modeling Language (ML)
B. UML Diagrams for Software Modeling
C. UML Diagram Taxonomy

3. UML Diagrams
A. Use Case Diagram: Modeling Requirements
B. Class Diagram: Modeling System Structure
C. Sequence Diagram: Modeling Ordered Interactions

4. UML Support Tools

2/772021 Fall. [CS350] Introduction to Software Engineering – UML

Software System Modeling

2021 Fall. [CS350] Introduction to Software Engineering – UML 3/77

What is a Model?

£ A model is an intended simplification of reality.
£ Models (i.e., specifications) describe structures and

behaviors of a system they intend to model.

Modeling

Implementation

Modeling is a proven and well-accepted engineering technique
(e.g., Architectural model of houses and buildings, Mathematical models)

4/77

Why Do We Use Models for Software Development?

£ To easily communicate information between different
stakeholders in an unambiguous way
� We can analyze and design a system in a more reliable and

structured way by using software development.

modelsmodelsmodels

developer(s) tester(s)

customer(s) / user(s)

Criteria for
analysis/design/
implementation

Criteria for validation /
development completion

Criteria for
testing / verification

5/77

Typical Properties of Good Models

Correct
Every statement is one that the software shall meet

Unambiguous
A model should have only one interpretation

Complete
Models should include all the requirements

Consistent
Subsets should not have any conflict

6/77

UML
Unified Modeling Language

2021 Fall. [CS350] Introduction to Software Engineering – UML 7/77

Modeling Language (ML)

£ A modeling language is any language with which a model
can be described.
� An ML can be graphical, textual, or more specific types

4Graphical ML uses a diagram technique
4Textual ML uses standardized keywords / expressions

� An ML contains two elements:
4Notation is the elements that make up a modeling language
4Semantics are the descriptions of what the notation means

8/77

An ML can be anything that helps you describe your system.
pseudo-code, source code, pictures, diagrams, or descriptions

Unified Modeling Language (UML)

£ Unified
� End to many similar approaches (i.e., modeling languages)
� Standardized by Object Management Group (OMG)

£ Modeling
� Main creative process of software development

£ Language
� Standardized & graphical modeling

languages to describe S/W
� Collection of different diagram types

9/77

Unified Modeling Language (UML)

£ UML is a visual (graphical) modeling language for specifying,
constructing and documenting:
� Object-oriented modeling
� Model/view paradigm
� Target language (or technique) independent

£ UML 2.0 leverages the industry’s investment in UML 1.x and
makes UML comprehensive, scalable and mature.
� Latest version: UML 2.5 (June 2015)

4http://www.omg.org/spec/UML/

10/77

http://www.omg.org/spec/UML/

UML Diagrams for Software Modeling

£ UML is a visual modeling language used to describe the
model of software system.
� Structure: What are software’s structural features?
� Behavior: How do the software components interact?

Representation of structure Representation of interactions

11/77

UML Diagram Taxonomy

Class
Diagram

Component
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Sequence
Diagram

Timing
Diagram

Use Case
Diagram

State Machine
Diagram

Activity
Diagram

Package
DiagramComposite

Structure
Diagram

Object
Diagram

Deployment
Diagram

Interaction
Diagram

Behavioral
DiagramStructural

Diagram

12/77

UML Diagrams

2021 Fall. [CS350] Introduction to Software Engineering – UML 13/77

Structural Diagrams of UML

*http://www.uml-diagrams.org/uml-25-diagrams.html

Diagram Description Elements

Class diagram
Shows structure of the designed system, subsystem or
component as related classes and interfaces, with their
features, constraints and relationships

Class, interface, feature,
constraint, relationships

Object diagram
Shows instance specifications of classes and interfaces
(objects), slots with value specifications, and links
(i.e., a class diagram with objects and no classes)

Instance specification,
object, slot, link

Package diagram Shows packages and relationships between the packages
Package, element,
dependency, element/
package import & merge

Component
diagram

Shows components and dependencies between them.
- Used for Component-Based Development (CBD)
- Used to describe systems with Service-Oriented

Architecture (SOA)

Component, interface,
provided & required
interface, class, port,
connector, artifact, etc.

Composite
structure diagram

Show (a) internal structure of a classifier, (b) a behavior of a
collaboration

Deployment
diagram

Show architecture of the system as deployment of
software artifacts to deployment targets

Deployment, artifact,
deployment target, node,
device, execution,
environment,
communication path,
deployment spec

14/77

Behavioral Diagrams of UML

*http://www.uml-diagrams.org/uml-25-diagrams.html

Diagram Description Elements

Use-case diagram

Describe a set of actions (use cases) that some system or
systems should or can perform in collaboration with one or
more external users of the systems (actors) to provide some
observable and valuable results to the actors or other
stakeholders of the system

Use case, actor,
subject, extend,
include, association

State machine
diagram

Used for modeling discrete behavior through finite state
transitions and expressing the behavior of a part of the system

State, transition,
pseudostate

Activity diagram
Shows sequence and conditions for coordinating lower-level
behaviors, rather than which classifiers own those behaviors
(e.g., control flow and object flow models)

Activity, partition,
action, object, control,
activity edge

Sequence diagram Most common kind of interaction diagrams which focuses on
the message interchange between lifelines (objects)

Lifeline, execution,
specification, message,
combined fragment,
interaction use, state
invariant, destruction
occurence

Communication diagram,
Interaction overview diagram,
Timing diagram

*See Note.

15/77

In This Lecture,

£ We will focus on two phases of software development:
� Analysis phase, Design phase

£ We will study three types of UML diagrams:
� Use-case diagram

4A high level visualization of how the system works
4Built on requirement specifications from discussions with developers,

customers, and/or end users
� Class diagram

4A collection of static model elements such as classes and types, their
contents, and their relationships

� Sequence diagram
4Model of sequential logic, in effect the time ordering of messages

between classifiers

16/77

In This Lecture,

Analysis phase Design phase
refinement

Use-case
model

Domain
model

Sequence
model

Class
diagram

State machine
diagram

Composite structure
(Signal, Interface etc.)

Generated
Code

17/77

Modeling Requirements

2021 Fall. [CS350] Introduction to Software Engineering – UML

Use Case Diagram
UML Diagrams (1/3)

18/77

Software Requirements

£ Requirements are descriptions of the services that a
software system must provide and the constraints under
which it must operate1.
� Requirements describe what the system will do at a high-level.
� Requirements Engineering (RE) is the process of establishing the

needs of stakeholders and the constraints.
4Requirements elicitation, definition, and so on.

Use Case Diagram

[1] Ian Sommerville, “Software Engineering” text website

Example functional requirements of Weblog content management system

19/77

Functional and Non-functional Requirements

£ Functional requirements
� Statements of services which the system should provide
� How the system should react to particular inputs
� How the system should behave in particular situations
� Ex) The content management system shall allows an administrator

to create a new blog account.
£ Non-functional requirements

� Constraints on the services or functions offered by the system
4Timing constraints, constraints on the development process,

standards
� Ex) Creating a new blog account process should be done in 0.1

second from a request of an administrator.

Use Case Diagram

[1] Ian Sommerville, “Software Engineering” text website 20/77

Functional and Non-functional Requirements

£ Functional requirements
� Statements of services which the system should provide
� How the system should react to particular inputs
� How the system should behave in particular situations
� Ex) The content management system shall allows an administrator

to create a new blog account.
£ Non-functional requirements

� Constraints on the services or functions offered by the system
4Timing constraints, constraints on the development process,

standards
� Ex) Creating a new blog account process should be done in 0.1

second from a request of an administrator.

Use Case Diagram

[1] Ian Sommerville, “Software Engineering” text website 21/77

Types of non-functional requirements

Actor & Use Case

£ Actor
� Someone or something that must interact with the system under

development
4Users, external systems, devices, etc.

� Not part of the system under development

£ Use Case
� Functionality that the system shall offer to an actor (related to

functional requirements)
� Interaction between one or more actors and the system

Use Case Diagram

22/77

Steps for Requirements Modeling

I. Capture system requirements
� Elicit requirements from stakeholders
� Analyze requirements

II. Describe system requirements
� Capture actors & use cases
� Connect communication lines
� Draw system boundaries

III. Describe use cases
� Complete use case descriptions

Use Case Diagram

23/77

Step 1: Capturing a System Requirement

£ Elicit requirements from stakeholders and analyze the
requirements
� Example: Weblog Content Management System (Weblog CMS)

Use Case Diagram

There is no specific best way to start analyzing
requirements, but we can look at things

that interact with the system for starters.

24/77

Step 2: Describing System Requirements

£ Capture actors from requirements
� Someone or something interacting with the system, but not part

of the system under development

Use Case Diagram

Two ways to represent an actorHow to identify an actor? See appendix
25/77

Step 2: Describing System Requirements

£ Capture use cases from requirements
� Use cases where the system is being used to complete a specific

job for an actor

Use Case Diagram

Create a
New Blog Account

usually starts with a verb

26/77

Step 2: Describing System Requirements

£ Connect communication lines
� Connection between an actor and a use case to show the actor

participating in the use case

Use Case Diagram

A communication line between an actor (Administrator) and a use case

Administrator

Create a
new Blog Account

AdministratorAdministrator Author credentials DB

27/77

Content Management System

Step 2: Describing System Requirements

£ Draw system boundaries
� Explicit system boundary with the name of your system (or

subsystem) for separating actors and use cases

Use Case Diagram

Administrator

Create a
new Blog Account

AdministratorAdministrator Author
credentials DB

28/77

Step 3: Describing Use Cases

£ Complete use case descriptions to express important
information in the form of a text-based description
� They provide enough detail to system designers

Use Case Diagram

Use case description detail What the detail means and why it is useful

Related Requirements Some indication as to which requirements this use case partially or completely fulfills.

Goal In Context The use case’s place within the system and why this use case is important.

Preconditions What needs to happen before the use case can be executed.

Successful End Condition What the system’s condition should be if the use case executes successfully.

Failed End Condition What the system’s condition should be if the use case fails to execute successfully.

Primary Actors The main actors that participate in the use case. Often includes the actors that trigger or
directly receive information from a use case’s execution.

Secondary Actors Actors that participate but are not the main players in a use case’s execution.

Trigger The event triggered by an actor that causes the use case to execute.

Main Flow The place to describe each of the important steps in a use case’s normal execution.

Extensions A description of any alternative steps from the ones described in the Main Flow.

29/77

Example: Weblog CMS

£ Requirements & Use case diagram

Use Case Diagram

Requirement A.1

The content management system shall allow an administrator to create a new blog account,
provided the personal details of the new blogger are verified using the author credentials
database.

Requirement A.2

The content management system shall allow an administrator to create a new personal
Wiki, provided the personal details of the applying author are verified using the author
credentials database.

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

30/77

Example: Weblog CMS

£ Use case description of <Requirement A.1> (1/2)

Use Case Diagram

Use case name Create a new Blog Account

Related Requirements Requirement A.1.

Goal In Context A new or existing author requests a new blog account from the
Administrator.

Preconditions The system is limited to recognized authors and so the author needs to
have appropriate proof of identity.

Successful End Condition A new blog account is created for the author.

Failed End Condition The application for a new blog account is rejected.

Primary Actors Administrator.

Secondary Actors Author Credentials Database.

Trigger The Administrator asks the CMS to create a new blog account.

31/77

Example: Weblog CMS

£ Use case description of <Requirement A.1> (2/2)

Use Case Diagram

Main Flow Step
1
2
3
4

5
6

Action
The Administrator asks the system to create a new blog account.
The Administrator selects an account type.
The Administrator enters the author’s details.
The author’s details are verified using the Author Credentials
Database.
The new blog account is created.
A summary of the new blog account’s details are emailed to the
author.

Extensions Step
4.1
4.2

Branching Action
The Author Credentials Database does not verify the author’s details.
The author’s new blog account applications is rejected.

Use case name Create a new Blog Account

32/77

Use Case Relationships

£ Use case relationships provide your system designers with
some architectural guidance
� So they can efficiently break down the system’s concerns

£ UML provides 5 relationship types in a use case diagram
� Association between actor and use case
� Generalization of an actor
� Extend between two use cases
� Include between two use cases
� Generalization of a use case

Use Case Diagram

<<extend>>

<<include>>

33/77

Use Case Relationships: <<include>>

£ A use case can be reused by multiple use cases using the
<<include>> relationship.

Use Case Diagram

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

Check
Identity

<<include>>

<<include>>

<Check Identity> use case
is reused by two use cases

34/77

Use Case Relationships: <<include>>

£ A use case can be reused by multiple use cases using the
<<include>> relationship.

Use Case Diagram

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

Check
Identity

<<include>>

<<include>>

<use case A> <use case B>
<use case A> completely reuses all of the steps from the <use case B> being included

<<include>>

35/77

Use Case Relationships: <<extend>>

£ The <<extend>> relationship specifies optional reuse
depending on a runtime or system implementation decision.

Use Case Diagram

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

Check
Identity

<<include>>

<<include>>

Record
Application

Failure
<<extend>>

<<extend>>

<Record Application Failure> use case is executed
only when (i.e., optionally) an author applies and is

rejected to create an account or Wiki
36/77

Use Case Relationships: <<extend>>

£ The <<extend>> relationship specifies optional reuse
depending on a runtime or system implementation decision.

Use Case Diagram

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

Check
Identity

<<include>>

<<include>>

Record
Application

Failure
<<extend>>

<<extend>>

<use case A> <use case B>
<use case A> extends the behavioral options of <use case B> being extended

<<extend>>

37/77

Use Case Relationships: Generalization

£ Generalization is useful when you want to show that one use
case is a special type of another use case.

Use Case Diagram

Content Management System

Administrator
Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal Wiki

Check
Identity

<<include>>

<<include>>

Create a
new Editorial
Blog Account

Create a
new Regular

Blog
Account

inheritance

special type of
<create a new blog account>

use case

38/77

Use Case Diagram Summary

£ Example use case

Use Case Diagram

Telephone Catalog

Check Status

Place Order

Arrange
Payment

Supply
Customer

DataActor

Customer

Use Case

Use Case Name

Subject Name
Subject

System Boundary

Association

<<include>> <<include>>
Dependency
(Relationship)

39/77

Modeling System Structure

2021 Fall. [CS350] Introduction to Software Engineering – UML

Class Diagram

40/77

UML Diagrams (2/3)

Class of Object-Oriented Programming

£ Classes are basic building blocks of any OO system.
� A system structure is made up of a collection of pieces often

referred to as objects.
� An instance of a class is an object.

£ By defining classes, we can specify the types of objects in a
system and the relationships between them.
� Abstraction, Encapsulation

Class Diagram

Class Object
Instantiate

An instance of a class

41/77

State and Behavior of a Class

£ A class describes attributes and operations to represent
state and behavior, respectively
� They enable a class to describe a group of parts within your

system that share common characteristics

Class Diagram

Person

-Name: String
-Age: Integer

+getName()
+getAge()

Coffee

-Milk: Boolean
-Sugar: Integer
-Coffee: String

+getCoffee()

Class
Attributes

Class
Operations

42/77

Class Diagram

I. Find possible system classes
� Analyze classes of your system
� Draw class boxes

II. Describe class states & behaviors with attributes &
operations

III. Specify visibility to enforce encapsulation
� Analyze the accessibility / visibility of attributes & operations
� Describe visibility with symbols

IV. Describe relationships between classes
V. Describe additional characteristics, dependencies

Steps for Class Modeling

43/77

Step 1: Find System Classes

£ You can split into up to three sections to describe a class
� Top section: name of the class
� Middle section: attributes of the class (optional)
� Bottom section: operations of the class (optional)

Class Diagram

ClassName
Attribute
Attribute
Operation
Operation

ClassName
Attribute
Attribute

ClassName

Operation
Operation

ClassName

If some sections are not shown,
it does not imply that they are empty.

44/77

Step 2: Specify Attributes & Operations

£ Attributes can be represented in two ways:
� i) Placing them inside their section of the box (inline attributes)
� ii) Association with another class

Class Diagram

BlogEntry
-entries

1 *

Inline
attributes

-name: String
+publicURL: URL

Visibility

BlogAccount

Name Type

An attribute by
association

class BlogAccount {
private String name;
public URL publicURL;
...

}

class BlogAccount {
private BlogEntry[] entries;
...

}
class BlogEntry {...}

45/77

Step 2: Specify Attributes & Operations

£ Operations are specified on a class diagram with a signature
that is at minimum made up of:
� Visible property, Name, Pair of parentheses for parameters,

Return type
4+addEntry (newEntry: BlogEntry, author: Author): Void

Class Diagram

BlogAccount

- name: String
+ publicURL: URL
- authors: Author [1..5]
+ addEntry(newEntry: BlogEntry, author: Author): Void

Visibility Name Parameters Return Type

An operation

46/77

Step 3: Describe Visibility

£ To enforce encapsulation, we use visibility to make a class
selectively reveal its operations and data to other classes.

Class Diagram

Visibility Notation Accessibility

Public + It can be accessible directly by any other class

Protected # It can be accessible by specialized classes
(Part of the same class OR any other classes that
inherit from the class)

Package ~ It can be accessible by any class in the same package

Private - It can be accessible within the declared class itself

47/77

Step 4: Describe Relationships between Classes

£ We can describe relationships between classes using
relationship arrows offered by UML.

Class Diagram

Dependency Association Aggregation Composition Inheritance

Dashed Arrow Simple Connecting
Line

Empty Diamond
Arrow

Filled Diamond
Arrow

Empty Arrow

When objects of
one class work

briefly with
objects of another

class.

When objects of
one class work
with objects of

another class for
some prolonged
amount of time.

Weak
‘whole-part”
relationship

(‘has a’)

Strong
“whole-part”
relationships
(‘contains a’)

Relationships
between

superclass &
subclasses

When one class
owns but shares a

reference to objects
of another class.

When one class
contains objects of

another class

When one class is a
type of another class.

Weaker Class Relationship Stronger Class Relationship

48/77

Step 4: Describe Relationships between Classes

£ We can describe relationships between classes using
relationship arrows offered by UML.

Class Diagram

49/77

class Beverage{
private Integer water;
public void AddWater();

}

class Tea extends Beverage{
private String teabag;
public String getTea();

}

class Coffee extends Beverage{
private String coffee;
private Boolean milk;
private Integer sugar;
public String getCoffee();

}

Step 4: Describe Relationships between Classes

£ We can describe relationships between classes using
relationship arrows offered by UML.

Class Diagram

50/77

class Mailitem{
Address adr;
Body body;
public Mailitem(Address a, Body b){

adr=a; body=b;
}

}

class Window{
DrawingArea drwArea;
Scrollbar scrBar;
public Window(){

drwArea=new DrawingArea();
srcBar=new Scrollbar();

}
}

Step 4: Describe Relationships between Classes

£ We can describe multiplicity of associations by specifying
number of instances of one class related to one instance of
the other class.

Class Diagram

Person

-Name: String
-Age: Integer

+getName()
+getAge()

Coffee

-Milk: Boolean
-Sugar: Integer
-Coffee: String

+getCoffee()

drinks1 *

Association name
(verb phrase)

Multiplicity Multiplicity

One person drinks zero to many (cup of) coffee

51/77

Class Diagram Summary

£ Example class diagram

Class Diagram

Tea Coffee

- Milk: Boolean
- Sugar: Integer
- Coffee: String

Beverage

- Water: Integer

+ Addwater()

- Teabag: String

+ getTea() + getCoffee()

Person

- Name: String
- Age: Integer

+ getName()
+ getAge()

Class Name

Class
Attributes

Class
Operations

1

*
drinks

Association

Multiplicity

Generalization

52/77

Modeling Ordered Interactions

2021 Fall. [CS350] Introduction to Software Engineering – UML

Sequence Diagram

53/77

UML Diagrams (3/3)

Ordered Interaction between Objects

£ Using sequence diagrams, we can show the sequence of
communications between objects in time order.
� To show sequence of messages exchanged by objects/actors

performing a task
� To emphasize time ordering of messages
� To illustrate dynamic view (e.g., scenario, protocol) of a system

Sequence Diagram

54/77

Steps for Interaction Modeling
Sequence Diagram

I. Define and place participants
� Analyze possible participants in a use case
� Place participants with lifeline

II. Describe messages
� Define messages
� Describe message passing with activation bar & arrows

III. Describe creation and destruction of participants
IV. Manage complex interactions with sequence fragements

55/77

Step 1: Define and Place Participants

£ Definition of participants
� Participants are the parts of your system that

interact with each other during the sequence.
4A sequence diagram is made up of a collection

of participants

£ Drawing lifelines for individual participants
� A lifeline states that the part exists at that point

in the sequence.

£ Representing active state of a participant
� Activation bars are used to show that a

participant is active.

Sequence Diagram

Participant

56/77

Step 2: Describe Interaction Messages
Sequence Diagram

£ Messages are specified using arrows from the message
caller to the message receiver.
� Whatever direction: left->right, right->left, back to itself

The Message
Caller

Activation Bar
(optional)

The Message

The Message
Receiver

Return Arrow
(optional)

57/77

participant1: PariticipantClass participant2: PariticipantClass2

message (arguments)

Step 2: Describe Interaction Messages
Sequence Diagram

£ You can specify formats and types of messages.
� Format of a message signature:

4attribute = signal_or_message_name (arguments) : return_type

� Five types of message arrow:

<< create >> p1: Class

<< destroy >>

A Synchronous Message
(requires response)

An Asynchronous Message
(not requires response)

A Return Message

A Participant Creation Message

A Participant Destruction Message

58/77

Step 2: Describe Interaction Messages
Sequence Diagram

£ You can describe nested messages

Initial Message
Caller

The Initial
Message Messages

nested inside
Initial Message

participant1: PariticipantClass participant2

initialMessage(arguments)

participant3

nestedMessage1(arguments)

nestedMessage2(arguments)

59/77

Step 3: Describe Creation & Destruction
Sequence Diagram

£ Participants can be created and destroyed according to the
messages that are being passed.
� Creation: Pass a create(..) message to the participant’s lifeline or

use the dropped participant box notation
� Destruction: Pass a destroy message to the participant’s lifeline

and end the participant’s lifeline with the deletion cross

60/77

participant1 : ParticipantClass1 participant2 : ParticipantClass2

create(arguments)
participant3 : ParticipantClass3

<< destroy >>

<< create >>

<< destroy >>

Step 4: Manage Complex Interactions
Sequence Diagram

£ Using sequence fragments, we can manage complexity in
the sequence diagram
� Sequence fragment: ref (referencing)

4To reuse already existing sequence diagrams

Reference

:Customer :CoffeeMachine

sd InsertCoins

Coin()

OK()

:Customer :CoffeeMachine

ref
InsertCoins

theMessage(“Insert Coins”)

Coffee()

CupOfCoffee()
ref

ReturnCoins

sd MakeCoffee

61/77

Step 4: Manage Complex Interactions
Sequence Diagram

£ Using sequence fragments, we can manage complexity in
the sequence diagram
� Sequence fragment: alt (alternative)

4To show several alternative interactions (if-else if-else)

[1] http://www.tracemodeler.com/articles/a_quick_introduction_to_uml_sequence_diagrams/

More types of sequence fragments? See appendix

62/77

Example Sequence Diagram
Sequence Diagram

£ In Content Management System (CMS) example, we can
model the interactions needed for <Create a new Regular
Blog Account> use case

Content Management System

Administrator

Create a
new Blog
Account

Author
Credentials
Database

Create a new
Personal

Wiki

Check
Identity

<<include>>

<<include>>

Create a
new Regular

Blog
Account

Create a
new Editorial
Blog Account

Record
Application

Failure
<<extend>>

<<extend>>

63/77

Example Sequence Diagram
Sequence Diagram

£ Top-level sequence diagram

64/77

<<actor>>
admin: Administrator : ContentManagementSystem <<actor>>

acd: AuthorCredentialsDB
<<actor>>

es: EmailSystem

createNewBlogAccount

selectBlogAccountType(type)

enterAuthorDetails(author : AuthorDetails)

checkAuthorDetails(author : AuthorDetails)

createNewRegularBlogAccount(author : AuthorDetails)

sendEmail(email : Email)

emailBlogDetails(regularBlogAccount)

UML Support Tools

2021 Fall. [CS350] Introduction to Software Engineering – UML 65/77

£ A sophisticated software modeling tool
� Compatible with UML 2.x
� Supports 11 key diagrams in UML:

Class, Use Case, Sequence, Object, Activity, Component, and etc.

StarUML (UML Tool)

http://staruml.io/

Refer to StarUML 2 Documentation
http://docs.staruml.io/en/latest/

66/77

http://docs.staruml.io/en/latest/

£ Tool information
� Site: http://staruml.io/download
� Latest version: v2.8.0 (3/20/2017)
� Supporting various OSs: Windows, macOS, Linux
� Unlimited use for evaluation

£ You may start a UML project with:
� An empty project consisting of

4Use Case diagram
4Class diagram
4Sequence diagram

� The empty project file can be downloaded
from KLMS or SE course site.

StarUML (UML Tool)

http://staruml.io/ 67/77

http://staruml.io/download

1. Select a diagram from Model Explorer panel.
� You can add or delete models.
� Even you can change some properties

including name, in Editors panel.

2. Select a figure you want to draw.
� You can find a lot of figures in Toolbox panel.
� Click on a figure, then draw it on the canvas

by making a drag&drop.
� If you click one more, the figure is locked

so that you can draw multiple figures in a row.

How to draw a Diagram?

68/77

3. Set proper values for the figure.
� Change its visibility and name.
� A note can be added for the figure

to describe detailed information.
� You can easily add some relevant figures

by clicking buttons on the right.

4. Set relationship between figures.
� As seen at step 2, select a relation figure.
� Drag from one figure to another figure.
� Now you have a relation between figures,

and set proper values for the relation.

How to draw a Diagram?

69/77

5. Check your figures.
� You can see the hierarchy of the project

in Model Explorer panel.
� It includes your diagrams and figures.

6. Reuse the figures.
� If you want to use the same figure

in the same diagram or in another diagram,
it is simply done by dragging it
from Model Explorer panel to the canvas.

How to draw a Diagram?

70/77

£ English http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
� Modeling Use Case Diagram

4http://staruml.sourceforge.net/docs/user-guide(en)/ch05_1.html
� Modeling Class Diagram

4http://staruml.sourceforge.net/docs/user-guide(en)/ch05_2.html
� Modeling Sequence Diagram

4http://staruml.sourceforge.net/docs/user-guide(en)/ch05_3.html

£ Korean http://staruml.sourceforge.net/docs/user-guide(ko)/toc.html
� Modeling Use Case Diagram

4http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_1.html
� Modeling Class Diagram

4http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_2.html
� Modeling Sequence Diagram

4http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_3.html

Star UML Guide (in both English & Korean)

71/77

http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
http://staruml.sourceforge.net/docs/user-guide(en)/ch05_1.html
http://staruml.sourceforge.net/docs/user-guide(en)/ch05_2.html
http://staruml.sourceforge.net/docs/user-guide(en)/ch05_3.html
http://staruml.sourceforge.net/docs/user-guide(ko)/toc.html
http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_1.html
http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_2.html
http://staruml.sourceforge.net/docs/user-guide(ko)/ch05_3.html

£ List of Unified Modeling Language tools
� https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Langua

ge_tools

Other UML Support Tools

http://staruml.io/

Choose a freeware tool that supports UML 2.0 as possible.
But, you can use most of tools with a free trial :)

72/77

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

Thank You.
2021 Fall - CS350: Introduction to Software Engineering

Unified Modeling Language (UML)

Yong-Jun Shin, Doo-Hwan Bae
ppt slides by Young-Min Baek

Appendix

Software Requirements Specification (SRS)
Appendix A

*Learning UML 2.0 by Russ Miles & Kim Hamilton

£ Definition
� A software requirements specification (SRS) is a comprehensive description of the intended

purpose and environment for software under development.
� It lays out functional and non-functional requirements and may include a set of use cases

that describe user interactions that the software must provide.

£ Benefits
� Minimizing the time and cost: A SRS is a communication tool between stakeholders and

software designers. It permits a rigorous assessment of requirements before design can
begin and reduces later redesign.

� Planning ahead: A good SRS defines how an application will interact with system hardware,
other programs and users in a wide variety of real-world situations.

£ Goals
� Facilitating reviews
� Describing the scope of work
� Providing a reference to software designers (i.e. navigation aids, document structure)
� Providing a framework for testing primary and secondary use cases

Requirements: Functional & Non-functional Requirements
Appendix B

*Learning UML 2.0 by Russ Miles & Kim Hamilton

£ Functional Requirements
� Functional requirements are quantities that specify the performance of a design.
� They are related to the functions or behaviors of the design.
� What does the system do?

4 i.e. a functional requirement for a milk carton would be “ability to contain fluid without leaking”

£ Non-functional Requirements
� Non-functional requirements specify characteristics of the design that are not performance

based.
� They specify how the system should behave and are a constraint upon the systems

behavior.
� They include quantities of a system, such as capacity, usability, security, maintainability,

reliability, availability and so on.
4 i.e. A non-functional requirement for a hard hat might be “must not break under pressure of less than

10,000 PSI”

Identifying an actor
Appendix C

*Learning UML 2.0 by Russ Miles & Kim Hamilton

Is it an actual
person

interacting with
the system?

Is it something
that I can change

within the
system’s design?

Identify a “thing” from your requirements

Yes

No

Yes

No

It is probably not an actor.
Anything that you can affect and have

some control over when designing your
system is likely to be considered a part of

your system.

It is probably an actor.
Be careful when it comes to people;

some people can be considered part of
your system.

Stakeholders (1/2)
Appendix D

£ A stakeholder in the architecture of a system is an individual, team,
organization, or classes thereof, having an interest in the realization of
the system*.
� The architect must ensure that there is adequate stakeholder representation

across the broad, including nontechnology stakeholders (e.g., acquirers and
users) and technology-focused ones (developers, system administrators, and
maintainers)

*http://www.viewpoints-and-perspectives.info/home/stakeholders/

http://www.viewpoints-and-perspectives.info/home/stakeholders/

Stakeholders (2/2)
Appendix D

£ A stakeholder in an organization is (by definition) any group or individual
who can affect or is affected by the achievement of the organization’s
objectives[1,2].

£ Stakeholders are participants <in the development process> together
with any other individuals, groups or organizations whose actions can
influence or be influenced by the development and use of the system
whether directly or indirectly[3].

£ The people and organizations affected by the application[4].

£ Stakeholders are people who have a stake or interest in the project[5].

£ A stakeholder is anyone whose jobs will be altered, who supplies or gains
information from it, or whose power or influence within the organization
will increase and decrease[6].

[1] Helen Sharp, Anthony Finkelstein, and Galal Galal, “Stakeholder Identification in the Requirements
Engineering Process,” Database and Expert Systems Applications, 1999.
[2] Freeman, R.E. (1984) Strategic Management: A stakeholder approach, Pitman, Boston.
[3] Pouloudi, A. (1997) ‘Stakeholder Analysis as a FrontEnd to Knowledge Elicitation’, AI & Society, 11,
122−137.
[4] Conger, S. (1994) The New Software Engineering, International Thomson Publishing
[5] Cotterell, M. and Hughes, B. (1995) Software Project Management, International Thomson Publishing.
[6] Dix, A., Finlay, J. Abowd, G. and Beale, R. (1993) HumanComputer Interaction, Prentice-Hall.

Abstraction & Encapsulation
Appendix E

£ Abstraction
� Discarding irrelevant details within a given context

£ Encapsulation[1] (same as encapsulation of OO)
� Enabling a class to hide the inner details of how it works from the outside

world and only expose the operation and data that it chooses to make
accessible.

4 Information hiding concept
� Keeping the data safe and secure from

external interventions

[1] http://marchoeijmans.blogspot.kr/2012/06/encapsulation-concept.html

Visibility of Classes
Appendix F

Sequence Fragments
Appendix G

Sequence Fragments
Appendix G

