Software Development Lifecycle
& Process Models

CS350 Introduction to Software Engineering

Shin Yoo

Let’s build a high quality SW.

e
O
i e
ajd
QO
=
-
O
&
S,
QO
LL.

e \Write down the problem.

e Think real hard.

10N.

e Write down the solut

So we have decided to build a quality SW.

Now what? :)

We will take a 2-tier approach.

* First, break down SW development process into common stages: each stage
serves a specific purpose in the whole process of developing a software

system.

 Second, organise the stages systematically, so that one knows what follows
what.

Software Development Lifecycle

Let’s break down things we need to do into different stages

 Major stages in all software engineering projects:
 Requirements
* Design
* |mplementation
* Jesting
 Maintenance

 Each stage raises different questions and problems.

Requirements

A very broad question of “what do we exactly want to build?”

~ “Some people say, "Give the customers what they want." But
that's not my approach. Our job is to figure out what they're
going to want before they do. I think Henry Ford once said, "If
I'd asked customers what they wanted, they would have told
me, 'A faster horse!'" People don't know what they want until
you show it to them. That's why I never rely on market
research. Our task is to read things that are not yet on the

page.”

e Some activities are human
e Elicitation: what do the L

* Analysis and negotiation
iImmediately. Also, what

e Other activities focus on f€C _ c.... jop.

 Formal specifications: logical/mathematical representation of what your
software needs to do.

Example: Linear Temporal Logic (LTL)

 LTL is a modal logic system that can describe a changing world (i.e., linear
progression of time)

« Two modalities, [] P (P is always true) & (}Q (Q is sometimes true), combined

with a healthy dose of theory gives an expressive system that allows us to
describe temporal behavior of systems. For example,

« [(lost(x) = —onShelf(x)) : as arule, if a book is lost, it cannot be on the shelf

» [(request = (}respanse): if a request is made, at some point a response
should be given

 Why"? To automatically verify properties (i.e., formal verification)

Design

“Architecture is the important stuff. Whatever that is.” - Martin Fowler

* Given the technology and building blocks we have, how do we best satisfy the
requirements, while also meeting quality criteria for good software”?

e System Architecture: what is the overall structure of the entire system that can best
handle the given requirements?

e How to model the real world data?

 What is the general paradigm (e.g., monolithic vs. microservice, native vs. client/
server...)?

 Which component/technology to include/depend on?

* A large portion of academic effort also went into languages that can clearly express design,
e.t., UML.

Architecture Example

Software Heritage Project

%

workers

listener

runner workers

workers

Scheduler
Journal CIiept

API

API LY
C S
¥

Object Storage

This diagram shows core software
components, to communicate how the
main task (archiving software projects) is
broken down to smaller steps.

https://docs.softwareheritage.org/devel/

architecture/overview.html

=

https://docs.softwareheritage.org/devel/architecture/overview.html
https://docs.softwareheritage.org/devel/architecture/overview.html

Architecture Example

OMSOL (Scientific Simulat

-
=
. = — N1 [I L L I
—— - | | | |) = Computation Node 1 Computation Node N
* 4 * | e
Secondary COMSS(C)?_mSjary \ Custom File Server [— >
COMSOL Server 1 L Server (optional, for resource /117
(optional) (optional) storage and/or backups) HTTP TCP Custom SQL Comm.
Custom Apache Solr Datab B
Server (optional) a ?oét?c?naﬁwer
— —
Sim Apps
ﬁ)
FlexNet WebSocket NFS/SMB =\~
— [
Model Manager— D — l)
(
HPC Cluster TCP Ports 1718, 1719 g A P L PP h
o - Model Manager Server HPC cluster running
.......... Aumentlcatlon COMSOL batCh jObS
COMSOL Multiphysics __ s9 00
Client/Server TCPPMS 1718, 1719 i) R
h FlexNet License Server -
Primary
TCP Ports 1718, 1719
(*) The COMSOL Multiphysics Client COMSOL Server
handles the Model Manager server
connection only in the case when the :
Model Manager server host is not AD/LDAP .
reachable from the COMSOL : Cluster Scheduler Submission
Multiphysics Server host. :
_I - o
~r " - A:H —_——. 1 1 I —
L [= T . Computation Server running
Internet P B — J COMSOL Multiphysics Server
........................ ® Becccccccscscscsssssssssssssssssne® o
f_ ﬁ _..\ .. \
e 11177 1111/ 1111/ |
Reverse Proxy Server AD/LDAP Reverse Proxy Server
(optional) (Used for authentication in reverse proxy (optional)
or in COMSOL Server / Model Manager Server.)
\ | WebSocket
WebSocket HTTP(S) HTTR(S) WebSocket HTTP(S) (f)
_
= - - = - - S
o o o o o o
& o o ﬂ & & a a
External External Mobile device or PC running PC running PC running PC running PC running
PC running Mobile device or Web Browser COMSOL Client compiled app from COMSOL Multiphysics (CPU/NSL) COMSOL Multiphysics (FNL) COMSOL Multiphysics Client

COMSOL Client

\Web Browser

ion Software)

COMSOL Compiler
(can run without network)

(can run without network)

This diagram shows how the
participating hardware
components are connected,
with which roles.

https://www.comsol.com/
support/knowledgebase/1299

https://www.comsol.com/support/knowledgebase/1299
https://www.comsol.com/support/knowledgebase/1299

Implementation

...Wwhere you write lots of code

e Strangely, this is where things get very personal for many of us: pick your favorite trolling
war!

 Emacs vs. vilm) vs. VS Code, keyboard vs. mouse, C vs. Java vs. Python vs. JavaScript
vs. Haskell vs. Rust, ...

 Programming Paradigm (tightly coupled with design stage): procedural, object-oriented,
functional...

* Programming Environment (IDEs)
 Programming Assistants (code completion, Al models...)

* Attempts to derive implementation from design automatically (from Model Driven
Engineering to No Code/Low Code movement)

Challenges in Implementation

Why is it hard? Or at least not easy?

* |In many cases, what we want to achieve with code is definitely achievable (i.e., we
are not trying to resolve the halting problem...).

 Then why is it difficult?
* Problem of acquiring relevant information (StackOverflow)
* Problem of variability (no one has tried it on this particular environment)
* Problem of unclear/incorrectly understood specification
* Problem of speed (need it yesterday)

* |n total, we must be writing so much boilerplate code :)

Boilerplate

 (originally) rolled sheet of iron, with which bolilers for steam engines are made

* (in newspaper) a plate with fixed texts (instead of type-setting individual
letters) that can be reused without changing

-) -

'
-

,IA — tovee AW \m:\u,..r(.*“ - —

4 . . Y ’ y
- ' ' i fmae raol)
l,- allial! l'o‘ﬁa.d_-uu‘ bt:nst.lah n ol ‘ nywe " v

- .
M
P . .
b T
J 8l ‘
r e

F

fypeset fext Boilerplate Text

Bollerplate

! File Edit Selection View Go Run Terminal Help e index.html - INDEXES - #include <stdio.h>

#include <stdlib.h>

#include <conio.h>
D: > anaconda > web > < index.html > & html #include <math.h>

> texthtml @ - index.htm! @

<! <!DOCTYPE html> #include <string.h>

< #include <time.h>

< int main()
charset="utf-8"> {

http-equiv="X-UA-Compatible” content="IE=edge"”> 3 |

Domo =ifiaTa gotonto Lo dth_ode o_Ladth initial-scale=1">

return 0:
1J] ProductDTO.java §3 s

</ 1 package com.clearlabs.engineering.blog.ease_of_coding.dto;
3 public class ProductDTO {
4
private String 1id;
private String name;

8 public String getId() { if __name__ == '__main__"':

9 return id; # Anything placed here will never be executed in a module context.
10 } pass

116 public void setld(String 1d) {

12 this.id = id; if __name__ !'= '__main__"':

13 ¥ # Anything placed here will only be executed in a module context.
14 public String getName() { pass

15 return name;

16 }

17 public void setName(String name) {

18 this.name = name;

19 }

20

21}

Testing (or, more broadly, V&V)

a.k.a. “Is this okay?”
* This Iis where we check whether the end product is “okay”: we often talk
about Software Validation and Verification (V&V)

» Validation (“are we building the right product?”): checking whether the end
product actually satisfies the customer’s requirements

* Verification (“are we building the product right?”). checking whether, during
the process of building the product, we have made any mistakes

* |n contrast, the term “Software Quality Assurance” is often used to refer to
checking compliance with standards via reviews and audits

Technically “testing” is a

Rationalists vs. Empiricists

type of V&V

“It is correct because | proved that certain “It is correct because | tried it several
errors do not exist in the system” times and it ran okay”
(Formal Verification) (Software Testing)

V&V iIs one of the most prolific research areas.
Breakdown of ICSE 2022 Submissions

Top 10 Topics - Submitted

Topics j# Submitted Papers # Accepted Papers Acceptance Rate
Machine Learning with and for SE 237 74 31,22%
Software Testing 181 47 25,97%
Program Analysis 117 35 29,91%
Evolution and maintenance 105 31 29,52%
Mining Software Repositories 105 23 21,90%
Software Security 85 25 29,41%
Human Aspects of SE 68 20 29,41%
Validation and Verification 53 15 28,30%
Tools and Environments 49 12 24,49%

Reliability and Safety 46 15 32,61%

Maintenance

How do we keep the software alive?

* Any activities that take place after the delivery of the software project, with
the aim of correcting faults or improving other aspects.

* Perfective, Corrective, Adaptive, and Preventive changes

 Refactoring: pre-defined systematic code changes that are semantics-
preserving but also perfective/preventive

* Jesting & Debugging still takes place

 Handing incoming bug reports: triage/assignment, issue tracking

Code... smell...?

* Anti-patterns that are symptoms
of evolving problems (although
they do not break the
functionality right away)

* Long methods/classes/
parameter lists

e Switch statements in OO

e Middle-man classes

Bug Triage

* |n medicine, when full care cannot be provided for all patients, the available
resources should be rationed based on who are the most in need of care.

* A similar thing happens when a bug Is reported:
 How severe is it? Cosmetic, or deal-breaking?
 Who will be assigned with the task of patching it?

 Not all bugs are fixed.

 Not enough time, too dangerous to attempt to fix, not worth it...

Process Models

 Now that we have the major steps (requirements, design, implementation,
v&v, and maintenance), let’s connect them together to get the full picture.

 Dependencies between different stages are rather obvious - why do we have
multiple process models?

* As we gradually understood the nature of SW better, we have collectively
updated how we work with SW.

* They also reflect the changing business needs.

Waterfall Model

Starting from the very early days of computing (1950s)

* A linear, one-directional model where one stage depends on the deliverable
from the previous stage

 When does it work well?
o Stable, well-understood requirements

* Not time-pressured / well managed to flow in one-direction

r Design
Implementation
- j

Maintenance

Waterfall Model

Starting from the very early days of computing (1950s)

 What are the weaknesses?
* Cannot easily accommodate changes.

* There can be blocking stage or activities (within stage), delaying the entire
Process.

* \We do not have a working version until the very end.

r Design
Implementation
- j

Maintenance

The “V” Model

A variant of the waterfall

* Extend stages before and after Operation
' ' i i Verification and
implementation to include more Operations E Maintenance

' Validati
granularity levels Project O ey
Definition and Veriﬁqatiop
 Couple design stages with V&V RS .
Integration,
St ag €S Detailed l'lI‘eesgtl,‘ 21:()111
Design Verification

o Still inherently linear (it is just
folded up), but we are definitely
heading into a new direction :)

Time

Project
Test and
Integration

Incremental Model

Tries to overcome the rigidness of the waterfall model

 Divide and Conquer! Break down the whole project into small functional
goals.

* You will have a partially working product at the end of each iteration.

Commun ication

Planning

res

Modeling (analysis, design)

Construction (code, test) :I.
Deployment (delivery, feedback) jﬂ:l":l
elivery o

Software Functionality and Featu

Project Calendar Time

The Spiral Model

Barry Boehm, 1986

e Refinement of the waterfall model:

iterative, but not incremental

 Four main phases in each cycle:
determining objectives, risk
analysis, engineering, planning
next iteration

e As the spiral repeats itself, the
lifecycle progresses: requirements
— > prototype —> core system —
> additional features...

CUMMULATIVE

PROGRESS
THROUGH

EVALUATE
ALTERNATIVES
IDENTIFY,
RESOLVE RISKS

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

RISK ANALYSIS

RISK ANALYSIS

OPERATIONAL
PROTOTYPE

COMMITMENT
PARTITION

\ RQTS PLAN
LIFE CYCLE

REVIEW

—
~~

BENCHMARKS

DETAILED
DESIGN

SOFTWARE
PRODUCT
DESIGN

DEVELOP-
MENT PLAN

REQUIREMENTS

VALIDATION

INTEGRATION
‘ AND TEST

DESIGN VALIDATION
AND VERIFICATION

PLAN NEXT
PHASES INTEGRA-M

N TIONAND N
\ ACCEPT- \

IMPLEMEN-\ ANCE TEST
TATION

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

Figure 1: Original Diagram of Spiral Development

The Spiral Model

Barry Boehm, 1986

« Communicate closely with the stakeholders, so that risks can be identified
and minimized.

* Create prototype not as a partially working version of the final product, but as
a way to extract more complete requirements.

* Assign anchor point milestones so that cost and schedule can be adjusted.

 Weaknesses: heavy and administratively expensive (especially for smaller
projects, or if the specifications are relatively clear and would not change)

Dot-com Bubble

5000

4000

3000

2000

1000

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

NASDAQ

Lightweight Process Models
Widely popular during 90s

* |n the heated dot-com boom of 90s, software systems became more democratized.
* Results: more volatile requirements, time-to-market becoming critical

* Reflecting this, many more lightweight process models have been proposed:
 RAD (Rapid Application Development): less planning, reliant on prototyping

 XP (Extreme Programming): pair programming, unit test, TDD (Test Driven
Development)

 Scrum: iteratively develop intermediate goals using sprints (a typically 2-week
cycle) using small teams, less emphasis on formal processes

Agile Manifesto
http://agilemanifesto.org/ (2001)

* “We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

* Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the
left more.”

http://agilemanifesto.org/

Extreme Programming (XP)
Kent Beck, 1998

« Heavy emphasis on responding to changing requirements; pushes existing ideas to
their limits (hence the name).

 Good communication with the client —> A client representative is part of the
developer team and should stay at the site.

e Develop tests early and concurrently —> Write tests first (TDD).
 Document the system —> Pair Programming (better productivity)
* |Incremental Development —> Continuous Integration + Small Releases

 Modular/structural teams —> pairs work on all parts of the system so that
everyone knows everything

Extreme Programming (XP)
Kent Beck, 1998

Simple design
Use prototypes

Collect the next user “story” to implement
Set acceptance criteria
Plan the iteration

Planning

Pair Programming
Refactoring to maintain simplicity
Unit Testing

Continuous Integration

Testing

Acceptance Testing

Software

“Increment”

XP Practices

* |ncremental Planning: requirements are recorded as user stories, which are assigned
to different releases based on available resources and priority. A story is broken
down to actual tasks when chosen for a release.

 Small Releases: Release the minimal set of features that can add business values
first, and continue to make incremental release frequently.

e Simple Design: just enough to meet the current requirements.

* Jest Driven Development: use automated test framework to write tests before writing
the actual functionality - tests are actually the specifications.

* Refactoring: continuously look for code that can be improved and refactor for
simplicity.

XP Practices

e Pair Programming: program in pairs, checking each other’s work (driver writes the
code, while the navigator reviews and considers strategic directions.

e Collective Ownership: pairs of programmers work on all areas of the project so that
anyone can work on anything.

e Continuous Integration: all finished tasks should be immediately integrated into the
whole system, with all tests passing.

* On-site Customer: a client representative should stay with the team for the use of the
XP team - client is a member of the team.

o Sustainable Pace: frequent over-times are not desirable as it eventually hurts code
quality as well as team productivity.

Kanban
Circa 2010

» Visualization of the entire project using Kanban (Zt&/&#x in Japanese) board.

* Limit Work-In-Progress items; work items are pulled (i.e., teams pick up an
item if they have the capacity to do so) rather than pushed (i.e., items are
assigned to teams as they are generated).

Kanban

An example Kanban board (https://en.wikipedia.org/wiki/Kanban (development))

Feature

Epic
444

Epic
602

Policy
Business case showing
value, cost of delay,

size estimate and
design outline.

Selection at
Replenishment
meeting chaired by
Product Director.

Pool of Feature Feature User Story User Story User Story
Ideas Preparation Selected Identified Preparation Development
. 3-10
Progress Ready Progress eady Progress Done
Story

Story = Story

In

Acceptance

Deploy-
ment

Progress

Story Story Epic
_ | 401
Story

208 Epic
Epic Story Story 468
589 Epic 30203 30201 302-07 302-09
302 Story Story pe— Epic
" 302-02 302-06 302-08 362
651 o S
gl Stery
335-02 335-07
Story
512-01

Policy

Policy

Small, well- As per

“Definition of
Done” (see...)

understood,
testable, agreed
with PD & Team

Epic
694

Policy
Risk assessed per

Continuous Deploy-
ment policy (see...

https://en.wikipedia.org/wiki/Kanban_(development))

So what do people actually use?

* “lt depends” (but note that agile was a huge impact)

 Most likely, some mixture of everything, customized for the organizational
needs.

 The point is not to be a purist about any process model; rather, understand
the motivation behind all process models invented so far.

* Planning ahead thoroughly, with well documented decision trails (Waterfall,
V, Spiral)

* Being responsive and resilient to changes (Agile)

