
Shin Yoo

Software Development Lifecycle 
& Process Models
CS350 Introduction to Software Engineering

Let’s build a high quality SW.

• Write down the problem.

• Think real hard.

• Write down the solution.

Feynman Method

So we have decided to build a quality SW.
Now what? :)

We will take a 2-tier approach.

• First, break down SW development process into common stages: each stage
serves a specific purpose in the whole process of developing a software
system.

• Second, organise the stages systematically, so that one knows what follows
what.

Software Development Lifecycle
Let’s break down things we need to do into different stages

• Major stages in all software engineering projects:

• Requirements

• Design

• Implementation

• Testing

• Maintenance

• Each stage raises different questions and problems.

Requirements
A very broad question of “what do we exactly want to build?”

• Some activities are human-facing, conducted via natural language, and vague

• Elicitation: what do the users want?

• Analysis and negotiation: perhaps not everything can be implemented
immediately. Also, what is the “fair” distribution of your effort?

• Other activities focus on formalizing your requirements into specifications

• Formal specifications: logical/mathematical representation of what your
software needs to do.

Example: Linear Temporal Logic (LTL)

• LTL is a modal logic system that can describe a changing world (i.e., linear
progression of time)

• Two modalities, (P is always true) & (Q is sometimes true), combined
with a healthy dose of theory gives an expressive system that allows us to
describe temporal behavior of systems. For example,

• : as a rule, if a book is lost, it cannot be on the shelf

• : if a request is made, at some point a response
should be given

• Why? To automatically verify properties (i.e., formal verification)

□ P ◊Q

□ (lost(x) ⇒ ¬onShelf(x))

□ (request ⇒ ◊response)

Design
“Architecture is the important stuff. Whatever that is.” - Martin Fowler

• Given the technology and building blocks we have, how do we best satisfy the
requirements, while also meeting quality criteria for good software?

• System Architecture: what is the overall structure of the entire system that can best
handle the given requirements?

• How to model the real world data?

• What is the general paradigm (e.g., monolithic vs. microservice, native vs. client/
server…)?

• Which component/technology to include/depend on?

• A large portion of academic effort also went into languages that can clearly express design,
e.t., UML.

Architecture Example
Software Heritage Project

This diagram shows core software
components, to communicate how the
main task (archiving software projects) is
broken down to smaller steps. 
 
https://docs.softwareheritage.org/devel/
architecture/overview.html

https://docs.softwareheritage.org/devel/architecture/overview.html
https://docs.softwareheritage.org/devel/architecture/overview.html

Architecture Example
COMSOL (Scientific Simulation Software)

This diagram shows how the
participating hardware
components are connected,
with which roles. 
 
https://www.comsol.com/
support/knowledgebase/1299

https://www.comsol.com/support/knowledgebase/1299
https://www.comsol.com/support/knowledgebase/1299

Implementation
…where you write lots of code

• Strangely, this is where things get very personal for many of us: pick your favorite trolling
war!

• Emacs vs. vi(m) vs. VS Code, keyboard vs. mouse, C vs. Java vs. Python vs. JavaScript
vs. Haskell vs. Rust, …

• Programming Paradigm (tightly coupled with design stage): procedural, object-oriented,
functional…

• Programming Environment (IDEs)

• Programming Assistants (code completion, AI models…)

• Attempts to derive implementation from design automatically (from Model Driven
Engineering to No Code/Low Code movement)

Challenges in Implementation
Why is it hard? Or at least not easy?

• In many cases, what we want to achieve with code is definitely achievable (i.e., we
are not trying to resolve the halting problem…).

• Then why is it difficult?

• Problem of acquiring relevant information (StackOverflow)

• Problem of variability (no one has tried it on this particular environment)

• Problem of unclear/incorrectly understood specification

• Problem of speed (need it yesterday)

• In total, we must be writing so much boilerplate code :)

Boilerplate

• (originally) rolled sheet of iron, with which boilers for steam engines are made

• (in newspaper) a plate with fixed texts (instead of type-setting individual
letters) that can be reused without changing

Typeset Text Boilerplate Text

Boilerplate

if __name__ == '__main__':
 # Anything placed here will never be executed in a module context.
 pass

if __name__ != '__main__':
 # Anything placed here will only be executed in a module context.
 pass

Testing (or, more broadly, V&V)
a.k.a. “Is this okay?”

• This is where we check whether the end product is “okay”: we often talk
about Software Validation and Verification (V&V)

• Validation (“are we building the right product?”): checking whether the end
product actually satisfies the customer’s requirements

• Verification (“are we building the product right?”): checking whether, during
the process of building the product, we have made any mistakes

• In contrast, the term “Software Quality Assurance” is often used to refer to
checking compliance with standards via reviews and audits

Technically “testing” is a type of V&V
Rationalists vs. Empiricists

“It is correct because I proved that certain

errors do not exist in the system” 

(Formal Verification)

“It is correct because I tried it several

times and it ran okay” 

(Software Testing)

V&V is one of the most prolific research areas.
Breakdown of ICSE 2022 Submissions

Maintenance
How do we keep the software alive?

• Any activities that take place after the delivery of the software project, with
the aim of correcting faults or improving other aspects.

• Perfective, Corrective, Adaptive, and Preventive changes

• Refactoring: pre-defined systematic code changes that are semantics-
preserving but also perfective/preventive

• Testing & Debugging still takes place

• Handing incoming bug reports: triage/assignment, issue tracking

• Anti-patterns that are symptoms
of evolving problems (although
they do not break the
functionality right away)

• Long methods/classes/
parameter lists

• Switch statements in OO

• Middle-man classes

Code … smell…?

Bug Triage

• In medicine, when full care cannot be provided for all patients, the available
resources should be rationed based on who are the most in need of care.

• A similar thing happens when a bug is reported:

• How severe is it? Cosmetic, or deal-breaking?

• Who will be assigned with the task of patching it?

• Not all bugs are fixed.

• Not enough time, too dangerous to attempt to fix, not worth it…

Process Models

• Now that we have the major steps (requirements, design, implementation,
v&v, and maintenance), let’s connect them together to get the full picture.

• Dependencies between different stages are rather obvious - why do we have
multiple process models?

• As we gradually understood the nature of SW better, we have collectively
updated how we work with SW.

• They also reflect the changing business needs.

Waterfall Model
Starting from the very early days of computing (1950s)

• A linear, one-directional model where one stage depends on the deliverable
from the previous stage

• When does it work well?

• Stable, well-understood requirements

• Not time-pressured / well managed to flow in one-direction

Requirements
Design

Implementation
Testing

Maintenance

Waterfall Model
Starting from the very early days of computing (1950s)

• What are the weaknesses?

• Cannot easily accommodate changes.

• There can be blocking stage or activities (within stage), delaying the entire
process.

• We do not have a working version until the very end.

Requirements
Design

Implementation
Testing

Maintenance

A variant of the waterfall

• Extend stages before and after
implementation to include more
granularity levels

• Couple design stages with V&V
stages

• Still inherently linear (it is just
folded up), but we are definitely
heading into a new direction :)

The “V” Model

Incremental Model
Tries to overcome the rigidness of the waterfall model

• Divide and Conquer! Break down the whole project into small functional
goals.

• You will have a partially working product at the end of each iteration.

Barry Boehm, 1986

• Refinement of the waterfall model:
iterative, but not incremental

• Four main phases in each cycle:
determining objectives, risk
analysis, engineering, planning
next iteration

• As the spiral repeats itself, the
lifecycle progresses: requirements
—> prototype —> core system —
> additional features…

The Spiral Model

2 CMU/SEI-2000-SR-008

applications discussed in [Bernstein 00] and [DeMillo 00] use a complementary best practice
as their anchor point milestones: the AT&T/Lucent/Telcordia Architecture Review Board pro-
cess [AT&T 93]. Xerox’s Time-to-Market process uses the anchor point milestones as hard-
ware-software synchronization points for its printer business line [Hantos 00].

Several successful large aerospace spiral projects were also discussed. The best documented
of these is the CCPDS-R project discussed in [Royce 98]. Its Ada Process Model was the
predecessor of the Rational Unified Process and USC MBASE approach, which have both
been used on a number of successful spiral projects [Jacobson 99, Boehm 98], as has the SPC
Evolutionary Spiral Process [SPC 94]. Further successful large aerospace spiral projects
were presented by SAIC and TRW [Kitaoka 00, Bostelaar 00].

RQTS PLAN
LIFE CYCLE
 PLAN

CONCEPT OF
OPERATION

EMULATIONS MODELS BENCHMARKS

REVIEW

COMMITMENT
PARTITION

RISK ANALYSIS

RISK
ANAL.

RISK ANALYSIS

RISK ANALYSIS

PROTO-
TYPE1

PROTOTYPE3

OPERATIONAL
PROTOTYPE

EVALUATE
ALTERNATIVES
IDENTIFY,
RESOLVE RISKS

PROGRESS
THROUGH
STEPS

CUMMULATIVE
COST

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

DEVELOP-
MENT PLAN

INTEGRATION
AND TEST

PLAN

DESIGN VALIDATION
AND VERIFICATION

REQUIREMENTS
VALIDATION

SOFTWARE
PRODUCT
DESIGN

DEVELOP, VERIFY
NEXT LEVEL PRODUCT

SOFTWARE
RQTS

IMPLEMEN-
TATION

ACCEPT-
ANCE TEST

INTEGRA-
TION AND

TEST

UNIT
TEST

CODE

DETAILED
DESIGN

PROTOTYPE2

PLAN NEXT
PHASES

Figure 1: Original Diagram of Spiral Development

The Spiral Model
Barry Boehm, 1986

• Communicate closely with the stakeholders, so that risks can be identified
and minimized.

• Create prototype not as a partially working version of the final product, but as
a way to extract more complete requirements.

• Assign anchor point milestones so that cost and schedule can be adjusted.

• Weaknesses: heavy and administratively expensive (especially for smaller
projects, or if the specifications are relatively clear and would not change)

NASDAQ

Dot-com Bubble

Lightweight Process Models
Widely popular during 90s

• In the heated dot-com boom of 90s, software systems became more democratized.

• Results: more volatile requirements, time-to-market becoming critical

• Reflecting this, many more lightweight process models have been proposed:

• RAD (Rapid Application Development): less planning, reliant on prototyping

• XP (Extreme Programming): pair programming, unit test, TDD (Test Driven
Development)

• Scrum: iteratively develop intermediate goals using sprints (a typically 2-week
cycle) using small teams, less emphasis on formal processes

Agile Manifesto
http://agilemanifesto.org/ (2001)

• “We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

• That is, while there is value in the items on the right, we value the items on the
left more.”

http://agilemanifesto.org/

Extreme Programming (XP)
Kent Beck, 1998

• Heavy emphasis on responding to changing requirements; pushes existing ideas to
their limits (hence the name).

• Good communication with the client —> A client representative is part of the
developer team and should stay at the site.

• Develop tests early and concurrently —> Write tests first (TDD).

• Document the system —> Pair Programming (better productivity)

• Incremental Development —> Continuous Integration + Small Releases

• Modular/structural teams —> pairs work on all parts of the system so that
everyone knows everything

Extreme Programming (XP)
Kent Beck, 1998

Planning

Designing

Developing

Testing

Collect the next user “story” to implement

Set acceptance criteria

Plan the iteration

Simple design

Use prototypes

Pair Programming

Refactoring to maintain simplicity

Unit Testing

Continuous Integration

Acceptance Testing

Software
“Increment”

XP Practices

• Incremental Planning: requirements are recorded as user stories, which are assigned
to different releases based on available resources and priority. A story is broken
down to actual tasks when chosen for a release.

• Small Releases: Release the minimal set of features that can add business values
first, and continue to make incremental release frequently.

• Simple Design: just enough to meet the current requirements.

• Test Driven Development: use automated test framework to write tests before writing
the actual functionality - tests are actually the specifications.

• Refactoring: continuously look for code that can be improved and refactor for
simplicity.

XP Practices

• Pair Programming: program in pairs, checking each other’s work (driver writes the
code, while the navigator reviews and considers strategic directions.

• Collective Ownership: pairs of programmers work on all areas of the project so that
anyone can work on anything.

• Continuous Integration: all finished tasks should be immediately integrated into the
whole system, with all tests passing.

• On-site Customer: a client representative should stay with the team for the use of the
XP team - client is a member of the team.

• Sustainable Pace: frequent over-times are not desirable as it eventually hurts code
quality as well as team productivity.

Kanban
Circa 2010

• Visualization of the entire project using Kanban (간판/看板 in Japanese) board.

• Limit Work-In-Progress items; work items are pulled (i.e., teams pick up an
item if they have the capacity to do so) rather than pushed (i.e., items are
assigned to teams as they are generated).

Kanban
An example Kanban board (https://en.wikipedia.org/wiki/Kanban_(development))

https://en.wikipedia.org/wiki/Kanban_(development))

So what do people actually use?

• “It depends” (but note that agile was a huge impact)

• Most likely, some mixture of everything, customized for the organizational
needs.

• The point is not to be a purist about any process model; rather, understand
the motivation behind all process models invented so far.

• Planning ahead thoroughly, with well documented decision trails (Waterfall,
V, Spiral)

• Being responsive and resilient to changes (Agile)

