
Shin Yoo

Common Concerns and
Principles in SE
CS350 Introduction to Software Engineering

Concerns? Principles?

• Instead of talking about concrete techniques or definitions, I would like to
enumerate recurring ideas that apply to all SW projects - or even all
engineering projects, to some degree.

• These may sound too abstract and fluffy, but they are embedded in
everything you will see in this course

• They can help you understand a problem better

• They can also help you design a solution better

Abstraction
Computer science is essentially the art of abstraction.

• Apparently Donald Knuth said “layers of abstraction” when asked what is the single most
important thing that connects everything in computer science … (see https://
www.youtube.com/watch?v=bmSAYlu0NcY which is in itself a good lecture, we will come
back to this later)

• What is abstraction?

• The process of removing or hiding various lower level details so that we can generalize
and focus on properties of greater importance

• Why is it important?

• If you reveal the entire internal workings of a system to the outside, the outside world will
connect to/use/exploit your internals. This introduces problems when you later want to
modify your system.

https://www.youtube.com/watch?v=bmSAYlu0NcY
https://www.youtube.com/watch?v=bmSAYlu0NcY
https://www.youtube.com/watch?v=bmSAYlu0NcY
https://www.youtube.com/watch?v=bmSAYlu0NcY

What are the examples of abstraction in SW?

Separation of Concerns
One of the most important design principle.

• A system/program should be partitioned into different sections; each section
should address a separate concern.

• Why is this important?

• Easier to understand, reuse, change… (this is a recurring theme, isn’t it?)

• Cross-cutting concerns

• Concerns that affect the whole system (logging, security check, etc)

• Harder to centralize

Aspect Oriented Programming

• A new programming paradigm
where a single concern is
expressed as an “aspect” of the
program.

• Aspects can be “weaved into”
the remaining system at “join-
points”, i.e., the points of cross-
cutting concerns.

AOP

https://www.programcreek.com/2011/08/what-is-aspect-oriented-programming/

Modularity

• A system is highly modular if its components can be separated from each
other to be re-combined in a different way.

• If a system adopts good abstraction (i.e., it is connected with good interfaces)
and separation of concern is well implemented, then we call the system
“modular”

• Systems should be built as loosely coupled modules (i.e., can be separated
easily), each of which are highly cohesive (i.e., good separation of concerns)

An anecdote about modularity
(Confessions of an espresso nerd)

An anecdote about modularity
(Confessions of an espresso nerd)

+ +

An anecdote about modularity
(Confessions of an espresso nerd)

=

Can you think of a similar degree of modularity in SW?

• Hardware, maybe yes: we have reasonably successful interfaces (USB,
Ethernet…), many electronic components are standardized, etc etc

• Software?

• Unix pipelines?

• Maybe only at a very coarse granularity level: for example, in my workflow
of preparing my lectures, I can use PowerPoint or Keynote…?

• APIs…?

• Replacing PyTorch with TensorFlow?

• “I want to count lines in a file”

• cat my file.txt | wc -l

• “I want to count files in the
current directory”

• ls -1 | wc -l

Example: Unix Pipeline - wc

Example: Unix Pipeline

• “Unix Time-Sharing System: Forewords” by Mcllroy, Pinson, and Tague, The Bell Systems Technical
Journal, 1978

• Unix philosophy is:

• Make each program do one thing well. To do a new job, build afresh rather than complicate old
programs by adding new "features".

• Expect the output of every program to become the input to another, as yet unknown, program.
Don't clutter output with extraneous information. Avoid stringently columnar or binary input
formats. Don't insist on interactive input.

• Design and build software, even operating systems, to be tried early, ideally within weeks. Don't
hesitate to throw away the clumsy parts and rebuild them.

• Use tools in preference to unskilled help to lighten a programming task, even if you have to detour to
build the tools and expect to throw some of them out after you've finished using them.

Redundancy
i.e., having more than strictly necessary

• Is this good or bad? :)

Reusable Well-designed Modules = Components?
Component Based Design / Engineering

• This used to be a BIG thing: your program can be broken down to
components, each of which does some specific thing well, and is reusable.

• Visual programming IDEs like Delphi captures this ideal; GUIs are inherently
composable, and many GUI libraries (such as java Swing, or the default
Android widgets) can be viewed as components.

• Rapid Application Development (RAD) using Delphi

• https://www.youtube.com/watch?v=m_3K_0vjUhk (Windows 3.11)

• https://www.youtube.com/watch?v=aFaLm41CDI4 (now)

https://www.youtube.com/watch?v=m_3K_0vjUhk
https://www.youtube.com/watch?v=aFaLm41CDI4

Reusable Well-designed Modules = Components?
Component Based Design / Engineering

• But it seems like we are never “done” with inventing the wheel yet another
time… especially with the most “component-esque” part of our toolbox,
GUIs!

Bad Redundancy

• Code Clone is essentially the same code snippet pasted across different
locations (creating redundant code).

• Why is this considered a bad practice?

• Plagiarism / Code Provenance (IP issues)

• Bug fixing/feature addition becomes more difficult (what if you only change
parts of it?)

• What should we do?

• Refactor the code so that the functionality exists only once

Good Redundancy

• Duplicating servers for higher availability.

• Having multiple network service providers so that internet remains available.

• At the strategic level, even geographic redundancy may be needed (so that
your data survives any natural disaster).

• N-version Programming

• Develop N versions of critical system independently

• Use majority voting to decide the final outcome

• Your software needs to be correct in its
functionality.

• How do we ensure this?

• Experimental methods (i.e., testing),
or analytic methods (i.e., formal
verification)

• Ensure correctness of the
intermediate steps (e.g., static
analysis)

• Use proven libraries and
components

Correctness

Reliability

• The probability of SW operating without any failure for specified duration of
time in a specific environment.

• It is actually easier if we are retrospectively analyzing a failure; harder to
evaluate reliability of a software system that has yet to fail.

•

• Can be hard to estimate, requires heavy probability theory

• Note that the definition is parametric to time and environment

P =
of failing cases

of total cases under consideration

Reliability
A real world example from Gulf War, 1991

• The SW in Patriot missile defense system multiplied to system clock to get the “time from
booting” in seconds (with two digits below 0) in 24bit floating point register.

• in 24bit floating point register can only be represented as non-terminating binary expansion
cut at 24th place

•

• After 100 hours, the chopping error amounted to about 0.34 seconds: enough for an incoming
Scud missile to travel more than 500 meters, resulting in 28 deaths.

• Why do you think this system was believed to be reliable? How could we have avoided this?

1
10

1
10

1
10

=
1
24

+
1
25

+
1
28

+
1
29

+
1

212
+

1
213

+ …

Scalability
i.e., the capacity to be changed in size

• In theory, software is not physically restricted in its size; in practice, scalability
does not come free.

• What is the most efficient sorting algorithm? :)

Science of Sorting

#precise #O(nlogn) #proven

Now, what do we need if
we want to sort 1

petabytes of data?

Engineering the scalability of sorting
from “History of massive-scale sorting experiments at Google”

https://cloud.google.com/blog/products/gcp/history-of-massive-scale-sorting-experiments-at-google

• Tuning cluster
configuration

• Changing the file system
entirely + new encoding
to reduce write amount

• Hardware tuning (I/O
block size + SSD)

• Correctness check only
came in 2010 :)

Usability / Accessibility
“It works” and “It is nice to use” are different.

🥺
🥺

Usability / Accessibility
“It works” and “It is nice to use” are different.

Maintainability

• In real SW project, you are never “done”: your code/service/product may outlast your
presence in the organisation, and they keep evolving.

• Investigations of real world projects show that maintenance cost is over 60% of Total Cost
of Ownership (TCO).

• Changes made over lifetime of SW are of multiple types (IEEE1219/P14764):

• Perfective changes (i.e., adding features): more than 50%

• Corrective changes (i.e., fixing bugs): about 20%

• Adaptive changes (i.e., adapting to new environment): about 20%

• Preventive changes (i.e., preventing latent faults) - new addition in ISO/IEC 14764

Maintainability

• Whether your software allows smooth evolution is a fundamental concern.

• Many relevant discussions stem from this:

• Documentation

• Code comments: do you support, or not support, comments?

• Refactoring

Testability
(a related concept)

• It should be easy to test your software… but what do we mean by “easy to
test”?

• Testing is done at multiple levels: unit (i.e., individual functions and classes),
integration (i.e., testing the connections between units), and system (i.e.,
testing everything put together) - a good modular design naturally supports
this well.

• Testers and developers may be different people (more on this later) - a highly
readable, well documented code is naturally easier to test.

Security

• A good software should be secure: it should protect the information it
processes.

• Thorough consideration of software security can be pervasive, affecting
everything from architecture & design, through writing good code, eventually
to usability.

Functional/Non-Functional Requirements

• Functional Requirements: what is expected in terms of input-output behaviour
(i.e., correctness)

• Non-Functional Requirements: Properties related to the general operation of
the software system, instead of specific behaviour and correctness

• Many of the qualities we have examined: reliability, security, accessibility,
performance…

• Harder to analyse or test!

• Let’s look at a few examples…

Worst-Case Execution Time Analysis

• For certain real time embedded systems, you need to know how long the
program can take when executed

• Airbag controllers: there is a specific time window for the airbags to be
effective - triggering earlier or later than the time window is unsafe.

• We are used to analysing algorithmic complexity, but

• the analysis only asymptotic - it does not tell us the concrete wall clock
time

• it does not tell us anything about the specific hardware platform your code
runs one

(a simple example)

• Side channel attack exploits
information that can be gathered
because of the way SW is
implemented, not designed.

• What would be the “timing
attack” for the code on the right”

• How about “power analysis”?

Side-Channel Attacks

bool check_password(const char input[]){

 const char correct_password[] = "hunter2";

 if (strlen(input) != strlen(correct_password)) return false;

 for (int i = 0; i < strlen(correct_password); i++){

 if (input[i] != correct_password[i]) {

 return false;

 }

 }

 return true;

}

Summary

• What we covered today is by no means an exhaustive list of things you need
to consider when developing software.

• Given the multitude of quality criteria you need to consider, it is best that your
team has

• a diverse and suitable set of expertise

• high diversity in the team itself

