Introduction / AN
& Overview e
CS350 Introduction to 1 WORS o why?

Software Engineering

Shin Yoo

CS350 Introduction to Software Engineering
Spring 2023

» |Lecturer: Shin Yoo (first timer for CS350, be gentle)
o Office: E3-1 #2405

e shin.yoo@kaist.ac.kr

 Course Webpage: https://coinse.kaist.ac.kr/teaching/2023/cs350/

e TAsS

 Gabin An (agb94@kaist.ac.kr), Somin Kim (thaxls@kaist.ac.kr), Hyunseok
Lee (christmas@kaist.ac.kr)

mailto:shin.yoo@kaist.ac.kr
https://coinse.kaist.ac.kr/teaching/2023/cs350/
mailto:agb94@kaist.ac.kr
mailto:thaxls@kaist.ac.kr
mailto:christmas@kaist.ac.kr

CS350 Introduction to Software Engineering
Spring 2023

* Grading

* Assignments: 40%

* Project: 40%

e Quiz: 40%
* There is no exam, and there will be no lectures during the exam weeks.
 Requirements

 Reasonable programming skills

Project
CS350 | Spring 2023

 Team-based: form a 4-member team

* You will be both developers and clients :)
* As the client, you will propose a project (by writing requirement specs)
 Teams will sign up for projects

* As the developer, you will propose how you will make it (by writing design
document)

* You will sync up multiple times and report your interactions :)

Assignments
CS350 | Spring 2023

 Assignment 1: Essay on "The Mythical Man Month” - we will read a classic In
SE literature and consider whether it still holds good.

* Assignment 2: "Find a Bug Day” - we will find and document real world SW
bugs that affected us, and imagine how they could have been prevented.

* Assignment 3: "Git Challenge” - we will improve our git skills and solve a small
quiz.

* Assignment 4: "Future of Software Engineering” - we will try to decide whether
software engineers will go extinct thanks to Al.

» See the course webpage for more details including due dates.

Communications
CS350 | Spring 2023

* We will use KLMS only for assignment submission.
* | ecture materials will be published on the course webpage.

e Class communication will take place on Slack

* You are required to join cs350spring2023kaist.slack.com

» Set your profile name as “your full English name (your student number)”

 Use channels based on their names; please do not hesitate to ask
questions

http://cs350spring2023kaist.slack.com

DOs and DON’Ts

CS350 | Spring 2023

* Please engage during the class - speak up, ask questions, etc.
* There is no “grading” for participation - no pressure to say clever things :p
* | mean.... why not?

« DO NOT CHEAT - you will fail the course, no exception. By cheating | refer to:

 Copying other people’s text/code (or simply generating text/code using Al,
unless you are asked to do by me)

* Sharing your solution publicly without any safeguard

Any questions?

What is software engineering?

How is it different from
programming?

Software Engineering?

 “The application of a systematic,
disciplined, quantifiable approach
to development, operation and
maintenance of software” (IEEE
Systems and Software
Engineering Vocabulary, 2010)

e "a systematic engineering
approach to software
development” (Wikipedia, https://
en.wikipedia.org/wiki/

Software engineering)

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering

Software Crisis

* As long as there were no
machines, programming was no
problem at all; when we had a
few weak computers,
programming became a mild
problem, and now we have
gigantic computers,
programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble
Programmer, Communications of
the ACM, 1972

NATO Conference 1968

(Dijkstra was also there)

 The phrase ‘software
engineering’ was deliberately
chosen as being provocative, in
Implying the need for software
manufacture to be based on the
types of theoretical foundations
and practical disciplines that are
traditional in the established
branches of engineering.
- Editors of the proceedings of
Software Engineering (1968)

NATO Conference 1968

(Dijkstra was also there)

* The conference proceedings is a fascinating read: you can actually read the

whole thing in a nicely typeset PDF: https://www.scrummanager.com/files/
nato1968e.pdf

* There is also a very helpful blog post by Logan Mortimer, a software engineer
in Melbourne: https://isthisit.nz/posts/2022/1968-nato-software-engineering-
conference/

 Many interesting ideas and questions. Are software to be “manufactured” like
other engineering products? How do we measure progress? How do we scale
up to hundreds and thousands of people building the same system together?

https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/

How is SW like other engineering product?

How is it different from other engineering products?

Essential Properties of SW

as pointed out by Brooks Jr. in 1987

 Complexity

 More complex than any other human constructs for their size (no two parts
are identical, because we would factor them out)

e Scaling up does not mean making the same thing larger
o Conformity
* Physicists firmly believe that there is a unified theory of things

 Most of complexity in SW is arbitrary - SW has to conform to countless
many things (institutions, systems, users, regulations...)

Essential Properties of SW

as pointed out by Brooks Jr. in 1987

* Changeability
 Compared to other engineering products, SW is more frequently pressured to change

* |f a software system is useful, people will try new edge cases at the borderline of the
original domain

* A successful software can outlive the underlying hardware, and therefore has to adapt
* |nvisiblility

 SW cannot be easily embedded in space and therefore has no useful geometric
representation

* Without visual representation, communication and design becomes much more difficult

“No Silver Bullet”

e “Of all the monsters that fill the
nightmares of our folklore, none
terrify more than werewolves,
because they transform
unexpectedly from the familiar
into horrors. (...) (software) is
usually innocent and
straightforward, but is capable of
becoming a monster of missed
schedules, blown budgets, and
flawed products.” - Brooks Jr.

“No Silver Bullet”

* Brooks Jr. argues that there is no
silver bullet that will kill the SW
werewolf: the difficulties are
inherent in SW, and no single
technique will solve all of these.

* |n the same titled essay, Brooks
Jr. examines some candidates
for the silver bullet (back in 1987)

Hopes for the silver

(or the lack thereof)

e “Ada and other high level languages”: &

* “Object-oriented programming”: OO paradigm has survived, but probably not THE
only existing paradigm. The advanced type system he mentions is not mainstream
yet...

 “Al and Expert System”: a very complicated matter... but is it the silver bullet?

 “Automatic Programming”: that is, synthesising program from the specifications...
Large Language Models are in some way doing this, so part of the above

» “Graphical Programming”: okay, my 10 year old kid is graduating from Scratch to
Python soon... :)

Hopes for the silver

(or the lack thereof)

* “Graphical Programming”: okay, my 10 year old kid is graduating from
Scratch to Python soon... :)

* “Program Verification”: i.e., the art of “proving” that the program does not
have a bug - he says it would not really scale (which is true to this day)

 “Environment and tools”: we have IDEs and build systems that are beyond
the imagination of 1987 yet the SW problem has not gone away

o “Workstations”: “Well, how many MIPS can one use fruitfully? Compiling
could stand a boost, but a factor of 10 in machine speed would surely leave
thinking time the dominant activity in the programmer’s day” :)

“If SW Is inherently and arbitrarily complex, does not
conform to laws of nature or any single theory, and if
none of the technical advances during the last 30+ years
solved it, why should we study software engineering?”

About SE and Theory

Theory is when you know

@ .
everything but nothing
. works.

* |t may not be entirely untrue that EEAV 1 ;
there is no single general Practice is when everything
unifying theory of how to build a works but no one knows
perfect SW system... apart from why.

the mantra of “think very hard

and do it very well” In our lab, theory and

practice are combined:
* Are we doomed? nothing works and no one

knows why.

About SE and Theory

or “How | learned to stop worrying and
love SE &7

* Given the complexity and diversity of
SW systems, it is almost trivially
guaranteed that no single theory can
solve everything.

 Think of SE as a multiverse of
theories and underlying sub-fields -
In fact, it iIs such an umbrella term
that | myself do not know where SE
starts and ends.

 Each theory guides some best
practice - we need to learn which
works where.

= ol (A

I‘ { ‘

,%

De-mystifying CS350

* “It is a humanities course - nothing
Is technical”: believe me, most of the
topics we will go through has much
more technical difficulties hidden
underneath, we just cannot cover all
of them in an introductory course!

 Requirement Engineering (Formal
Specification), Testing and Analysis
(Verification, Program Analysis,
Testing Automation), Maintenance
(Predictive Modelling, Data Mining
for SW Development)...

De-mystifying CS350

* “Itis boring - you only ever write
documentations”. there ARE still
systems for which you really
need to do all of those. It is just
that, recently, we have so much
more software that are casual to
use AND develop!

As long as you make software, SE is relevant
regardless of the domain: ML, CV, NLP, etc...

oy MLOps Blog Categories Search all articles o} Guide to building MLOps stack Join our MLOps Q&A
MLOps Blog Data Machlne
Version Control for ML Models: Why You Need Verification || Resource pEL L
. anagemen
It, What It Is, How To Implement It Configuration || Data Collection Serving
Ml Infrastructure
© 6min = Ahmed Hashesh ’ B 14th November, 2022 — Analysis Tools
MLOps Feature Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
Version control is important in any software development environment, and even more so in machine by the Small blaCk bOX in thC mlddle ThC I'CqUiI'ed Surrounding infrastructure iS vast and Complex.

learning. In ML, the development process is very complex. It includes huge amounts of data, testing of

What is neptune.ai? _ o :
multiple models, optimization of parameters, tuning of features, and more.

It's an experiment tracker and model

registry that integrates with any ') .)

MLOps stack. If you want your research to be reproducible, you need proper version control tools to manage and track
all of the above. So, in this article, we're going to explore what version control is in machine learning, why

Log model metadata from anywhere you need it, and how to implement it.

in your pipeline. See results in the

web app.

i rouct Read also

Table of contents

1. What does 'versio

Model version control

What does ‘version control’ mean?

Version Control is the process of tracking and managing software changes over time. Whether you're
building an app or an ML model, you need to track every modification done by members of the software
team to fix bugs and avoid conflicts.

To achieve that, you can use a version control framework. Frameworks were developed to track every
individual change by each contributor and save it in a special kind of database, where you can identify the
differences and help prevent conflicts in concurrent work while merging.

(we welcome anything that works)

{AAD}c{A}
{A}while bdo c {AA!b} A
|
P(x) A1q(y) L

O—O—0 |\

Node find (Node prev, Node cur
while (cur.key < key) {
prev = cur;
cur cur.n

, int key) {

3.
Armando So

—
PL —> Progr

(Co, 0.) - 0." (Cl’ 0.") -

(CO; clya) - 0’

Test Script Editor

CodeBERT:

A Pre-Trained Model for Programming and Natural Languages

Test Result

MO0 Sikuli = TestDrJava.sikuli
(e = R
TestJEdit.sik l TestDrjava.sikuli £3 I Unit Test
J 1
Run

def testRadioBoxes(self):
self.goPreferengEs()|
click (| Display Oprions™)
assertExist(| @ textand icons |)
click(| © icons only |)

apply = (Apply)
click(apply)

assertExist(|| B ls | @[R]])
click(O text andicons)
click(apply)

assertExist(| | B New | < Open | B Save | [Close | |)

Runs: 2/2 *Errors. 1 * Failures: 0
Vo

Results:

£ Tests |

s

X Failures

) TestDrJava

2t stRadioBoxes

testCloseDialcg

“« »

—) 4 »

—gp—
L —

Vision —> GUI Testing

All other CS principles contribute to SE

(2) Feature

e —--
(4) Building |
_— nstance
a prediction model

extraction
), Xiaocheng Feng'
| Jiang*, Ming Zhou® Machine
bin Institute of Technolo L
n University, China Salner
na | — | —
jing, China Software Instances , -
r.edu.cn Arch iVGS MetI'ICS Trammg ‘e .
Instances Classification
»u}@microsoft.com
L (1) Labeling (3) Creating (5) Prediction &
(buggy / clean) a training corpus evaluation

rration

Ml _~ Dafart Pradicrtinn

V ((—atfloor A —open) Y
V ((atfloor A —open) U

V (—atfloor U open))))))))))

Logic Theory —> Model Checking

Summary

« SW is probably the most complex engineering artefact that humans build.

* Building SW well requires more than excellent programming skills (although it
helps).

* We will spend the semester thinking about known problems, and get
ourselves familiarised with widely accepted responses to those problems.

* |t may not be easy bit | hope it will be fun :)

