
Introduction  
& Overview
CS350 Introduction to 
Software Engineering 
 
Shin Yoo



CS350 Introduction to Software Engineering
Spring 2023

• Lecturer: Shin Yoo (first timer for CS350, be gentle)


• Office: E3-1 #2405


• shin.yoo@kaist.ac.kr


• Course Webpage: https://coinse.kaist.ac.kr/teaching/2023/cs350/


• TAs


• Gabin An (agb94@kaist.ac.kr), Somin Kim (thaxls@kaist.ac.kr), Hyunseok 
Lee (christmas@kaist.ac.kr)

mailto:shin.yoo@kaist.ac.kr
https://coinse.kaist.ac.kr/teaching/2023/cs350/
mailto:agb94@kaist.ac.kr
mailto:thaxls@kaist.ac.kr
mailto:christmas@kaist.ac.kr


CS350 Introduction to Software Engineering
Spring 2023

• Grading


• Assignments: 40%


• Project: 40%


• Quiz: 40%


• There is no exam, and there will be no lectures during the exam weeks.


• Requirements


• Reasonable programming skills



Project
CS350 | Spring 2023

• Team-based: form a 4-member team


• You will be both developers and clients :)


• As the client, you will propose a project (by writing requirement specs)


• Teams will sign up for projects


• As the developer, you will propose how you will make it (by writing design 
document)


• You will sync up multiple times and report your interactions :)



Assignments
CS350 | Spring 2023

• Assignment 1: Essay on "The Mythical Man Month” - we will read a classic in 
SE literature and consider whether it still holds good.


• Assignment 2: "Find a Bug Day” - we will find and document real world SW 
bugs that affected us, and imagine how they could have been prevented.


• Assignment 3: "Git Challenge” - we will improve our git skills and solve a small 
quiz.


• Assignment 4: "Future of Software Engineering” - we will try to decide whether 
software engineers will go extinct thanks to AI.


• See the course webpage for more details including due dates. 



Communications
CS350 | Spring 2023

• We will use KLMS only for assignment submission.


• Lecture materials will be published on the course webpage.


• Class communication will take place on Slack


• You are required to join cs350spring2023kaist.slack.com


• Set your profile name as “your full English name (your student number)”


• Use channels based on their names; please do not hesitate to ask 
questions

http://cs350spring2023kaist.slack.com


DOs and DON’Ts
CS350 | Spring 2023

• Please engage during the class - speak up, ask questions, etc. 


• There is no “grading” for participation - no pressure to say clever things :p


• I mean…. why not? 


• DO NOT CHEAT - you will fail the course, no exception. By cheating I refer to:


• Copying other people’s text/code (or simply generating text/code using AI, 
unless you are asked to do by me)


• Sharing your solution publicly without any safeguard



Any questions?



What is software engineering?



How is it different from 
programming?



• “The application of a systematic, 
disciplined, quantifiable approach 
to development, operation and 
maintenance of software” (IEEE 
Systems and Software 
Engineering Vocabulary, 2010)


• “a systematic engineering 
approach to software 
development” (Wikipedia, https://
en.wikipedia.org/wiki/
Software_engineering)

Software Engineering?

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_engineering


• As long as there were no 
machines, programming was no 
problem at all; when we had a 
few weak computers, 
programming became a mild 
problem, and now we have 
gigantic computers, 
programming has become an 
equally gigantic problem. 
— Edsger Dijkstra, The Humble 
Programmer, Communications of 
the ACM, 1972

Software Crisis



(Dijkstra was also there)

• The phrase ‘software 
engineering’ was deliberately 
chosen as being provocative, in 
implying the need for software 
manufacture to be based on the 
types of theoretical foundations 
and practical disciplines that are 
traditional in the established 
branches of engineering. 
- Editors of the proceedings of 
Software Engineering (1968) 

NATO Conference 1968



NATO Conference 1968
(Dijkstra was also there)

• The conference proceedings is a fascinating read: you can actually read the 
whole thing in a nicely typeset PDF: https://www.scrummanager.com/files/
nato1968e.pdf


• There is also a very helpful blog post by Logan Mortimer, a software engineer 
in Melbourne: https://isthisit.nz/posts/2022/1968-nato-software-engineering-
conference/


• Many interesting ideas and questions. Are software to be “manufactured” like 
other engineering products? How do we measure progress? How do we scale 
up to hundreds and thousands of people building the same system together?

https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://www.scrummanager.com/files/nato1968e.pdf
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/
https://isthisit.nz/posts/2022/1968-nato-software-engineering-conference/


How is SW like other engineering product? 
 

How is it different from other engineering products?



Essential Properties of SW
as pointed out by Brooks Jr. in 1987

• Complexity


• More complex than any other human constructs for their size (no two parts 
are identical, because we would factor them out)


• Scaling up does not mean making the same thing larger


• Conformity


• Physicists firmly believe that there is a unified theory of things


• Most of complexity in SW is arbitrary - SW has to conform to countless 
many things (institutions, systems, users, regulations…)



Essential Properties of SW
as pointed out by Brooks Jr. in 1987

• Changeability


• Compared to other engineering products, SW is more frequently pressured to change


• If a software system is useful, people will try new edge cases at the borderline of the 
original domain


• A successful software can outlive the underlying hardware, and therefore has to adapt


• Invisibility


• SW cannot be easily embedded in space and therefore has no useful geometric 
representation


• Without visual representation, communication and design becomes much more difficult



• “Of all the monsters that fill the 
nightmares of our folklore, none 
terrify more than werewolves, 
because they transform 
unexpectedly from the familiar 
into horrors. (…) (software) is 
usually innocent and 
straightforward, but is capable of 
becoming a monster of missed 
schedules, blown budgets, and 
flawed products.” - Brooks Jr.

“No Silver Bullet”



• Brooks Jr. argues that there is no 
silver bullet that will kill the SW 
werewolf: the difficulties are 
inherent in SW, and no single 
technique will solve all of these.


• In the same titled essay, Brooks 
Jr. examines some candidates 
for the silver bullet (back in 1987)

“No Silver Bullet”



Hopes for the silver
(or the lack thereof)

• “Ada and other high level languages”: 🤠


• “Object-oriented programming”: OO paradigm has survived, but probably not THE 
only existing paradigm. The advanced type system he mentions is not mainstream 
yet…


• “AI and Expert System”: a very complicated matter… but is it the silver bullet?


• “Automatic Programming”: that is, synthesising program from the specifications… 
Large Language Models are in some way doing this, so part of the above


• “Graphical Programming”: okay, my 10 year old kid is graduating from Scratch to 
Python soon… :)



Hopes for the silver
(or the lack thereof)

• “Graphical Programming”: okay, my 10 year old kid is graduating from 
Scratch to Python soon… :)


• “Program Verification”: i.e., the art of “proving” that the program does not 
have a bug - he says it would not really scale (which is true to this day)


• “Environment and tools”: we have IDEs and build systems that are beyond 
the imagination of 1987 yet the SW problem has not gone away


• “Workstations”: “Well, how many MIPS can one use fruitfully? Compiling 
could stand a boost, but a factor of 10 in machine speed would surely leave 
thinking time the dominant activity in the programmer’s day” :)



“If SW is inherently and arbitrarily complex, does not 
conform to laws of nature or any single theory, and if 

none of the technical advances during the last 30+ years 
solved it, why should we study software engineering?”

🥺



🥺

• It may not be entirely untrue that 
there is no single general 
unifying theory of how to build a 
perfect SW system… apart from 
the mantra of “think very hard 
and do it very well”


• Are we doomed?

About SE and Theory



or “How I learned to stop worrying and 
love SE 🙃”

• Given the complexity and diversity of 
SW systems, it is almost trivially 
guaranteed that no single theory can 
solve everything.


• Think of SE as a multiverse of 
theories and underlying sub-fields - 
in fact, it is such an umbrella term 
that I myself do not know where SE 
starts and ends.


• Each theory guides some best 
practice - we need to learn which 
works where.

About SE and Theory



• “It is a humanities course - nothing 
is technical”: believe me, most of the 
topics we will go through has much 
more technical difficulties hidden 
underneath, we just cannot cover all 
of them in an introductory course!


• Requirement Engineering (Formal 
Specification), Testing and Analysis 
(Verification, Program Analysis, 
Testing Automation), Maintenance 
(Predictive Modelling, Data Mining 
for SW Development)…

De-mystifying CS350



• “It is boring - you only ever write 
documentations”: there ARE still 
systems for which you really 
need to do all of those. It is just 
that, recently, we have so much 
more software that are casual to 
use AND develop!

De-mystifying CS350



As long as you make software, SE is relevant
(regardless of the domain: ML, CV, NLP, etc…



All other CS principles contribute to SE
(we welcome anything that works)

PL —> Program Analysis

NLP —> Code Generation
ML —> Defect Prediction

Vision —> GUI Testing Logic Theory —> Model Checking



Summary

• SW is probably the most complex engineering artefact that humans build.


• Building SW well requires more than excellent programming skills (although it 
helps).


• We will spend the semester thinking about known problems, and get 
ourselves familiarised with widely accepted responses to those problems.


• It may not be easy bit I hope it will be fun :)


