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Fault Localization (FL), in which a developer seeks to identify which part of the code is malfunctioning
and needs to be fixed, is a recurring challenge in debugging. To reduce developer burden, many automated
FL techniques have been proposed. However, prior work has noted that existing techniques fail to provide
rationales for the suggested locations, hindering developer adoption of these techniques. With this in mind, we
propose AutoFL, a Large Language Model (LLM)-based FL technique that generates an explanation of the bug
along with a suggested fault location. AutoFL prompts an LLM to use function calls to navigate a repository,
so that it can effectively localize faults over a large software repository and overcome the limit of the LLM
context length. Extensive experiments on 798 real-world bugs in Java and Python reveal AutoFL improves
method-level acc@1 by up to 233.3% over baselines. Furthermore, developers were interviewed on their
impression of AutoFL-generated explanations, showing that developers generally liked the natural language
explanations of AutoFL, and that they preferred reading a few, high-quality explanations instead of many.
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1 INTRODUCTION

Fault Localization (FL) is the task of identifying which part of a software system is responsible for a
bug. FL has been surveyed to take the majority of human debugging time: Böhme et al. report that
bug diagnosis (which includes localization) took 66% of debugging time in their human study [5],
while Winter et al.’s large-scale survey on developer sentiment of debugging suggests that one of
the most disliked aspects of debugging is finding where the bug is [39]. As a result, FL is a popular
research topic, with techniques ranging from slicing-based FL [2], to sophisticated ones that use
causality analysis [19] or model the propagation of erroneous states [49].

Despite the promise of automated FL techniques, they have not been widely adopted by practi-
tioners. We are unaware of any industrial adoption of FL systems, unlike the case for automated
program repair (APR) [24, 40]. Looking at the various expectations that developers have of FL tools
outlined by Kochhar et al. [17], one aspect that developers emphasize is providing rationales: almost
90% of developers agreed that the capability of an FL technique to generate rationales is important.
∗Both authors contributed equally to this research.
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In contrast, to the best of our knowledge, there are few FL techniques that can explain why a
particular location is the likely culprit in an accessible manner. Consequently, an explainable FL
technique, one that can explain both the bug and the reason why the suggested location is linked
to the buggy behavior, would take FL techniques one step closer to practitioner adoption.

In this paper, we present AutoFL, an automated FL technique that uses Large Language Models
(LLMs) to not only suggest potential bug locations, but also to provide explanations on how the
bug occurred and why the suggested location is suspicious. LLMs are difficult to apply to FL in
a realistic manner, as a critical input for FL is the entire software repository, which can span
thousands to millions of lines of code, whereas the context length of LLMs is generally limited
- for example, the largest LLMs at the time of writing can process 32,000 tokens at once, much
less lines. To solve this problem, we allow LLMs to navigate the source code by allowing them
to call functions that return information on covered classes, their covered functions, and the
implementation and documentation for any covered function. Given a prompt asking for the LLM
to find the answer using the available functions, the LLM invokes a series of function calls to gather
relevant information, and reaches a conclusion on how the bug manifested, which we treat as the
explanation of the bug. By construction, AutoFL has many benefits when compared to existing FL
techniques: it only requires a single failing test, it can deal with multiple programming languages
seamlessly, and critically can generate explanations for developers.

We perform thorough experiments to evaluate both the FL capability of AutoFL and the quality
of its explanations. Our quantitative evaluation on the FL performance of AutoFL using real-world
bug datasets from Java and Python indicates that when using the GPT-3.5 language model, it could
achieve comparable or superior performance to existing techniques. For example, when comparing
against the Ochiai SBFL technique, AutoFL improves on its method-level acc@1 score by 19.7%
on the Defects4J benchmark and 166.7% on the BugsInPy benchmark; using GPT-4, AutoFL could
perform even better, outperforming Ochiai by 233.3% on BugsInPy. By repeating the execution of
AutoFL [35], we also demonstrate that we can estimate the level of confidence AutoFL has in its
results, providing an avenue for reducing false positives when presenting results to developers.

Meanwhile, evaluating the quality of explanations generated by AutoFL is a difficult, yet impor-
tant aspect when assessing AutoFL. First, manual analysis of 300 sampled explanations from 60
bugs reveals that about 20% of generated explanations accurately describe how the bug happened,
while 56.7% of all bugs had an accurate description. Critically, we presented the explanations of
AutoFL to professional developers, and performed open-ended interviews on what they liked
about the explanations, and what was unsatisfactory. Our key findings are that developers were
generally supportive of explaining FL results and bugs, with many suggesting that the natural
language descriptions of the error message and target functions were helpful, while identifying
that redundant content and incorrect fix suggestions could annoy developers and lead them astray.
Developers additionally indicated the desire to see a few explanations instead of many.

These results suggest that it would benefit practitioners to develop techniques that automatically
identify which explanations are helpful. We present the results of our follow-up preliminary
experiments which estimate the quality of explanations based on the quality of tests and patches
made with an LLM conditioned on those explanations. We find positive correlation with the
correctness of explanations, providing hints as to how explanations could be automatically assessed
for developer usage.

To summarize, our contributions are:

• We introduce AutoFL, an LLM-based FL technique that overcomes the input limitations of
LLMs by allowing them to autonomously retrieve relevant portions of the code, and generates
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an explanation of how the bug happened before suggesting a fault location, making it an
explainable FL technique.

• We rigorously evaluate the FL performance of AutoFL, and find that it can outperform FL
baselines over two large real-world bug benchmarks, and that it can indicate when its answer
is likely to be correct, potentially reducing developer hassle with false positives.

• We evaluate the explanations generated by AutoFL, and find that accurate explanations could
be generated for more than half of all bugs, while developers had positive views towards the
explanations generated by AutoFL.

The remainder of the paper is organized as follows. Section 2 provides the academic background
of our work, while Section 3 describes how AutoFL performs FL. The evaluation setup for AutoFL
is described in Section 4, with the results of this evaluation being shown in Section 5. Section 6
describes our preliminary experiments to automatically identify helpful explanations, Section 7
lays out threats to validity, and Section 8 concludes.

2 BACKGROUND

This section provides the background and research context.

2.1 LLM Tool Use

By integrating chain-of-thought prompting [36] with the output of tools, ReAct [48] demonstrated
that LLMs are capable of interacting with tools to achieve better performance on tasks. Since then,
LLM interaction with external tools has been widely explored. For example, HuggingGPT [30]
has LLMs compose computer vision pipelines by dynamically integrating the results of various
computer vision models together. LLM tool use has also been explored in software engineering,
notably for program repair: Xia et al. [45] integrated test feedback into the prompt, while Kang et
al. [13] allows LLMs to invoke a debugger.
Recent iterations of OpenAI’s LLMs have embraced this change and added a feature named

function calling.1 This capability enables users to provide function descriptions to the LLM, which
can respond with JSON data requesting a function call, complete with arguments required for
calling the function, on the digression of the LLM. For instance, to answer a user inquiry about the
current weather, an LLM may call a function that retrieves the weather of a particular location,
which would be processed in an automated manner and presented to the LLM so that it can provide
a coherent response.2 In this context, we aim to define a set of functions that the LLM can employ
to gather necessary information for debugging.

2.2 Fault Localization

Fault Localization (FL) is a critical process in debugging that involves identifying specific locations
in a program’s source code where bugs are present. Automated FL techniques help developers save
time, particularly in large codebases, by accurately pinpointing the code locations most likely to be
responsible for the target bug. We provide a comparison of existing FL work with AutoFL in Table 1.
Commonly used FL technique families include Spectrum-based FL (SBFL), Information Retrieval-
based FL (IRFL), and Mutation-based FL (MBFL) [42]. While SBFL techniques are known to be the
most effective standalone techniques [50], they require coverage data from both passing and failing
tests. Meeting this requirement can be challenging for large enterprise software, where coverage
1https://platform.openai.com/docs/guides/gpt/function-calling
2While this is most notably implemented by the OpenAI function call API, tools such as LangChain [7] allow other LLMs to
incorporate functions as well; preliminary results using Llama2 [33] with AutoFL are given in our supplementary material.
3While Zou et al. report this performance in their paper, their replication package did not include IRFL results.
4This was achieved by only instrumenting the buggy class, which would not be possible in practice.
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Table 1. A comparison of existing FL techniques with AutoFL. The precision of SBFL, MBFL, and IRFL

was recalculated based on the artifacts of Zou et al. [50]; for other techniques, precision comes from the

corresponding papers.Wu et al. [43] only evaluate statement-level FL, so their precision could not be compared.

Required Artifact Prec@5 on D4J Time Multilang. Rationale
SBFL Test suite 61% [50] minutes yes no
MBFL Test suite 54% [50] hours yes no
IRFL Bug report 3%3 [50] seconds yes no

CombineFL [50] All of the above 69% [50] hours no no
DeepRL4FL [21] Test suite 79% [21] hours no no

UniVal [19] Pass/Fail test 75% [19] minutes4 no no
SmartFL [49] Pass/Fail test 70% [49] minutes no no
Wu et al. [43] Buggy method/class - - yes yes

AutoFL Single test Up to 71% minutes yes yes

📁 Codebase
💻 get_code_snippet

💻 get_comments

💻 get_class_covered

💻 get_method_covered ⛳ Coverage

AutoFL
Algorithm

Language
Model

Stage 1 Explanation Generation FL PredictionStage 2

1
Bug 
Information

2
Function 

Interaction
up to N 
times

3
Bug 

Explanation
Query

Location 4 5 Answer

… …
System Under Test💾

Fig. 1. Diagram of AutoFL. Each arrow represents a prompt/response between components, with the circled

numbers indicating the order of interactions. Function interactions are made at most N times, where N is a

predetermined parameter of AutoFL.

measurement can have high computational costs [4, 10, 15]. Additionally, most FL techniques lack
a rationale or explanation in their output, limiting their reliability and practicality in practical
debugging. As Kochhar et al. [17] note, rationales for FL are crucial for bug fixing, as clear rationales
enable developers to understand why a particular location is identified as the culprit for the bug,
helping them incorporate their domain knowledge and make informed decisions. Meanwhile, the
recent work of Wu et al. [43] presents a buggy method/class and asks an LLM which location is
likely to be buggy and why. However, it is difficult to use as a standalone FL technique in practice,
as it requires prerequisite knowledge of which method/class is buggy for operation.

3 APPROACH

In this paper, we introduce AutoFL, a novel automated and autonomous FL technique that har-
nesses LLMs to localize bugs in software given a single failing test. A key advantage of using
LLMs is that they can generate natural language explanations on why a particular location seems
likely to be buggy, as LLMs are adept in both software engineering and natural language process-
ing tasks [6, 44]. Conceptually, we define an ‘explanation’ as any text that helps the developer
comprehend the bug or how AutoFL came to a conclusion; to actualize this ideal and make such
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explanations, we designed AutoFL to provide the logical flow from the root cause to the failure, as
was identified a key component for failure explanations by Du et al. [8].

AutoFL specifically focuses on method-level FL for two main reasons. First, the method granu-
larity is the favored granularity level among developers according to prior work [17]; furthermore,
recent work on LLM-based automated debugging techniques often require method-level localization
results as a minimum [11, 43, 44], suggesting that localization on the method level is a recurring
problem in LLM-based automated debugging. As mentioned earlier, dealing with large code reposi-
tories is a challenge for LLMs, but we tackle this issue by equipping LLMs with custom-designed
functions to enable code exploration and relevant information extraction.

An overview of AutoFL is depicted in Fig. 1. We employ a two-stage prompting process, where
Stage 1 involves inquiring about the root cause of the given failure, and Stage 2 requests output
about the fault location. In Stage 1, 1 AutoFL provides a prompt to the LLM containing failing test
information and descriptions of available functions for debugging. 2 The LLM interacts with the
provided functions autonomously, to extract the information needed for the debugging of the given
failure. 3 Based on the gathered information, the LLM generates an explanation about the root
cause of the observed failure. In Stage 2, 4 the LLM is queried to return the culprit location for
the bug, and 5 the LLM responds by providing the culprit method. In doing so, we can explicitly
acquire both the root cause explanation and the bug location.

Listing 1. System Prompt for LLM

You are a debugging assistant. You will be presented with a failing test, and tools (functions) to
↩→ access the source code of the system under test (SUT). Your task is to provide a step-by-
↩→ step explanation of how the bug occurred, based on the failing test and the information
↩→ you retrieved using tests about the SUT. You will be given N chances to interact with
↩→ functions to gather relevant information. An example answer would look like follows.

<HANDCRAFTED ROOT CAUSE ANALYSIS EXAMPLE>

During the process, the system message5 shown in Listing 1 is used to guide the LLM in its
role as a debugging assistant. As described before, we aimed for AutoFL to generate the logical
flow from fault to failure; the prompt was designed with this in mind, as it asks for a step-by-step
explanation of how the bug occurred. This has the added benefit that it may also improve the
performance of AutoFL, as generating explanations before answering is known to help improve
performance [18]. Furthermore, the handcrafted example is a brief one that describes the cause of a
bug in two sentences, nudging AutoFL towards generating concise explanations. In the remainder
of the section, we provide details for each stage of AutoFL, and explain the postprocessing pipeline
which transforms LLM outputs into a ranked list of actual code elements.

3.1 Stage 1: Generating Root Cause Explanation

At the outset, AutoFL initiates the FL process by presenting an initial prompt about the failed test
to the LLM (Fig. 1, 1 ). This prompt is automatically generated and includes bug-related information
such as the failing test and its error stack trace. Listing 2 shows the prompt template, with the
relevant failure details highlighted in blue.

First, the prompt specifies the name of the failing test and provides the test code snippet (Lines
1-9). The test code snippet is enclosed within triple backticks to indicate it is a code block. We
employ two heuristics to minimize irrelevant content that may confuse the LLM. First, we minimize
5A system message refers to a message that is used to guide the behavior of the LLM by providing instructions.

5



FSE’24, July 15–19, 2024, Brazil Kang, An, and Yoo

Listing 2. Example prompt from Defects4J Lang-48

1 The test `...EqualsBuilderTest::testBigDecimal()` failed. The test looks like:
2
3 ```java
4 381 : public void testBigDecimal() {
5 382 : BigDecimal o1 = new BigDecimal("2.0");
6 383 : BigDecimal o2 = new BigDecimal("2.00");
7 385 : assertTrue(new EqualsBuilder().append(o1, o2).isEquals()); // error occurred here
8 386 : }
9 ```
10
11 It failed with the following error message and call stack:
12 ```
13 junit.framework.AssertionFailedError
14 at ...EqualsBuilderTest::testBigDecimal(EqualsBuilderTest.java:385)
15 ```
16 Start by calling the `get_failing_tests_covered_classes` function.

the snippet to exclusively include statements placed prior to where the failure occurs, which is
explicitly marked with the comment "// error occurred here"; as test statements after the
failure are not executed, they bear less relevance to the bug than the actually executed test code. In
case the failure is within a nested block, the entire outermost statement containing the error is
included. Additionally, any preceding assertion statements are detected and removed, as we can be
sure that these assertions passed and are thus less likely to be relevant to the bug; indeed, their
inclusion could confuse the language model. For example, Line 384 in Listing 2 is an assertion
statement that passed which is irrelevant to the actual bug. Hence, it was automatically removed
and not visible in Listing 2. While AutoFL uses a single test in its prompt, note that the prompt can
be easily extended to handle multiple failing tests by concatenating the information from each test.

Following the snippet, the prompt presents the failure symptoms consisting of an error message
and the stack trace (Line 11-15). Stack traces are automatically minimized by retaining only the
information related to the target repository (e.g., lines related to external libraries are omitted).
Additionally, repeated subsequences occurring more than five times are condensed to improve
readability and conciseness, which helps with long stack traces, e.g. stack overflow errors.

Finally, the prompt ends with a suggestion that the LLM call the get_covered_classes function
(Line 16), to encourage the LLM to make use of functions when generating its answer. Preliminary
experiments showed the addition of this instruction improved the function call success rate by the
LLM. Note that we append this initial function call request and its response to the message chain
of AutoFL without requiring an actual call from the LLM.

Along with the prompt, AutoFL provides the four specialized functions for debugging and allows
the LLM to decide whether to (i) request a function call (Fig. 1, 2 ), with a limit of at most 𝑁 function
interactions, or (ii) to generate a user-facing bug explanation (Fig. 1, 3 ), which concludes Stage 1.
If the LLM requests a function call, AutoFL executes the function and provides the return value
back to the model by adding the result to the message history. The first two functions, indicated in
blue in the diagram, allow the LLM to obtain class-level and method-level coverage information
related to the failing test. With these functions, the LLM can narrow down the methods associated
with the observed failure, enabling a targeted analysis of the root cause. The latter two functions,
denoted with red in the diagram, are general code navigation tools, which take the signature
of a method of interest as input and return the code snippet and the relevant documentation (if
it exists). While simple, these functions permit significant flexibility for the LLM to explore the
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repository and access the current implementation and specification of methods. Furthermore, as
Shuster et al. [32] note, models tend to be more truthful when augmented with document-retrieving
tools; thus, by including functions that retrieve information as a part of AutoFL, we increase the
likelihood that AutoFL will generate an accurate description of how the bug happened, as was our
initial goal. This is also indirectly reflected in our results in Section 5, which show that without
this information retrieval, FL performance drops. If the LLM provides invalid arguments to these
functions, a guidance message aimed at improving subsequent function call requests is returned.
For instance, when the LLM submits incomplete method signatures that match multiple existing
methods, the following guidance message is returned: "There are multiple matches to that query. Do
you mean any of the following: <candidates>?" Additional details on the implementation of such
guidance messages can be found in our artifact.

Listing 3. Prompt to Request the Fault Location

Based on the available information, provide the signatures of the most likely culprit methods for
↩→ the bug. Your answer will be processed automatically, so make sure to only answer with the
↩→ accurate signatures of the most likely culprit (in `ClassName.MethodName(ArgType1,
↩→ ArgType2, ...)` format), without commentary (one per line).

3.2 Stage 2: Pinpointing The Fault Location

After Stage 1 concludes, the LLM is then prompted to predict the culprit methods based on the
available information (Fig. 1, 4 ), based on the prompt in Listing 3. In this stage, unlike Stage 1,
we enforce the model to respond immediately without making function calls, assuming that the
LLM has already (implicitly) identified the fault location(s) in Stage 2. Finally, the entire FL process
concludes with the LLM providing a response pinpointing the potential fault locations (Fig. 1, 5 ).
For instance, given the initial prompt about Lang-48 (Listing 2) in Stage 1, the LLM of AutoFL

sequentially made four function calls: first, to obtain the class and methods covered by the failing
test, then to retrieve code snippets for two methods of EqualsBuilder, namely isEquals() and
append(Object, Object). The LLM then identifies the root cause of the bug: an erroneous uti-
lization of the equals method for BigDecimal objects, resulting in a comparison based on references
rather than values in the appendmethod. In Stage 2, the LLM suggests EqualsBuilder.append(Object,
Object) as the buggy method, which matches the developer patch location.

3.3 Finalizing Fault Localization Results

To start, we assign scores to the methods by combining the results of 𝑅 repeated runs of AutoFL.
Specifically, if a final prediction contains a total of 𝑛 methods, we give a score of 1/𝑛 to each of these
identified methods.6 These individual scores are then averaged over all 𝑅 predictions. Formally, the
score of a method𝑚 is defined as:

score(𝑚) = 1
𝑅

𝑅∑︁
𝑘=1

( 1
|𝑟𝑘 |

· [𝑚 ∈ 𝑟𝑘 ]) (1)

where 𝑟𝑖 is the set of predicted methods from the 𝑖-th run, and [.] is the Iverson bracket which
returns 1 when the predicate inside is true, and 0 otherwise. For example, for method 𝐵 in Fig. 2,
there are four AutoFL runs that predict the method as a faulty location. Following Eq. (1), the
score for method B would be (0.5 + 1.0 + 1.0 + 0.5 + 0.0)/5 = 0.6. After calculating the scores for all
6No scores are distributed in cases where the prediction results are erroneous, or if the entire AutoFL process is interrupted
due to other errors.
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Fig. 2. Scoring and ranking candidate methods (depicted as black rectangles) based on five AutoFL prediction

outcomes (depicted as colored rectangles). For every prediction outcome, the scores (represented as colored

circles) are evenly distributed among all the methods included in that particular outcome.

methods predicted by AutoFL, we rank them in descending order of scores. For instance, in the
given example, the four predicted methods are sorted into [B, D, A, C], as their scores are [0.6,
0.2, 0.1, 0.1], respectively. In case of a score tie, we prioritize methods that appeared in earlier
predictions over others as a final, arbitrary tiebreaker.

Note that if there are methods with a score of 0 (i.e., not part of the final AutoFL results) but are
covered by the failing tests, e.g., the method E in the given example, we append them to the end of
the ranked list to ensure the list includes all methods relevant to the failure. If there are multiple
such methods, they are primarily sorted in descending order of the number of failing tests covering
each method. In case of ties among them, we give priority to methods that are more frequently
mentioned during the function interaction process of AutoFL (Fig. 1, 2 ), based on the intuition
that methods that are inspected by the LLM or related to inspected methods are more likely to be
faulty than methods that were never observed in the debugging process.

Finally, after producing a complete ranked list of suspicious methods, e.g., [B, D, A, C, E] in
Fig. 2, our next step involves estimating the confidence in the final predictions. We gauge the level
of confidence based on the consistency of the LLM prediction results across multiple iterations,
motivated by the previous work on LLM self-consistency [35]. The intuition is that if the LLM
consistently produces similar predictions, we would have more confidence in the results. Therefore,
we select the highest score among the methods covered by failing tests, then use it to determine
the confidence score𝑀 , as follows:

confidence = max
𝑚∈𝑀

𝑠𝑐𝑜𝑟𝑒 (𝑚) (2)

4 EXPERIMENTAL SETTINGS

This section details the experimental setup used to evaluate AutoFL.

4.1 ResearchQuestions

RQ1. How accurately does AutoFL localize faults?

• Evaluation Metric: FL performance is evaluated with the acc@k metric which measures the
number of bugs for which an actual buggy location was within the top 𝑘 suggestions of a tool,
as previous work suggests developers are only willing to look at a few suggested locations
when debugging [17, 29], and as this metric is often used by prior work [20, 49, 50]. To deal
with ties in the ranking, instead of using the average tiebreaker, we use the ordinal tiebreaker,
as we believe it is closer to what a developer would experience when using an FL tool.
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• Baselines: We evaluate the FL capability of AutoFL using a total of 798 reproducible bugs from
Defects4J (Java) and BugsInPy (Python); see the dataset details in Section 4.2.1). For Defects4J,
we compare against the best-performing standalone techniques from Zou et al. [50], namely the
Ochiai [1] and DStar [41] SBFL techniques and the Metallaxis [28] MBFL technique. To ensure
consistency with our experimental setup, we recalculated the method-level acc@k metrics
for the same set of bugs using the publicly available replication package provided by Zou et
al. We also compare against the state-of-the-art standalone FL technique, SmartFL [49]. As
SmartFL was only evaluated on a subset of Defects4J due to the complex Java features used
in Closure [49], the comparison involves only these 222 Defects4J bugs excluding 131 bugs
from Closure. Finally, we also compare against the Test-LLM baseline, which predicts the fault
location using an LLM based on the failing test and error message alone (i.e., it is AutoFL
without function interaction). Meanwhile, for the BugsInPy dataset, we compared against the
SBFL results reported by Widyasari et al. [37], again recalculating method-level acc@k values
for the same set of bugs using their replication package.

RQ2. How well does the confidence from AutoFL align with the actual FL performance?

Before a user decides whether to inspect the generated FL results, it would be beneficial if
AutoFL could accurately predict the performance of FL. Therefore, we investigate how well the
prediction confidence from AutoFL (defined in Eq. (2)) aligns with FL performance. We calculate
Spearman’s rank correlation coefficients between the estimated confidence values and the following
three widely used ranking metrics (higher is better). These metrics are used as they are defined for
individual FL outcomes, whereas acc@k in RQ1 aggregates performance over the entire dataset.
• Precision@1 (𝑃@1): The precision at the top rank, meaning it equals 1 if the highest-ranked
method is found to be faulty; otherwise, it is 0.

• Reciprocal Rank (𝑅𝑅): The reciprocal rank of the highest-ranked faulty method.
• Average Precision (𝐴𝑃 ): The average precision values for each rank of the faulty methods.

RQ3. How good are the quality of the explanations of AutoFL?

As an explainable FL technique, it is important to evaluate the quality of the explanations of
AutoFL. To this end, we manually evaluate 300 explanations from 60 bugs, which were randomly
selected from the Defects4J dataset. Explanations were evaluated on the following four criteria,
modeled after the bug explanation evaluation criteria from Mahbub et al. [23], which are also
showcased through real examples in Figure 7.
• Accurate: the explanation contains a detailed description of why the bug occurs, which goes
beyond simply explaining the error message.

• Imprecise: the explanation contains an inaccurate statement.
• Concise: the explanation succinctly describes why the bug occurs, without extraneous content.
• Useful: the explanation correctly describes how to fix the bug.
Two authors manually evaluated each explanation and resolved differences through discussion;

these final explanation evaluation results are used in our analysis. We further analyze the relation-
ship between FL confidence and explanation quality - assuming FL results are selectively shown
via confidence, AutoFL would be more useful if explanations tend to be of higher quality when FL
results are shown.

RQ4. How do professional developers feel about the explanations of AutoFL?

To evaluate the practical impact of explainable FL techniques, we invited 16 professional develop-
ers to use the explanations of AutoFL to debug bugs from the BugsInPy benchmark. In particular,
developers are asked to debug two bugs that we selected to be of moderate difficulty following
prior work [46] for about one hour. Based on this, we present how professional developers feel
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Table 2. Details of the bug datasets. The terms #FTs and #PMs refer to the average number of failing tests

and patched methods, respectively. The calculation of patched methods excludes omission bugs. Projects

marked with † originate from Defects4J [12], whereas the remaining ones are sourced from BugsInPy [38].

Project #Bugs #FTs #PMs Project #Bugs #FTs #PMs Project #Bugs #FTs #PMs

PySnooper 2 1.00 2.00 luigi 28 1.29 1.65 tornado 14 1.14 1.15
ansible 11 1.27 1.45 matplotlib 27 1.04 1.58 youtube-dl 42 1.00 1.39
black 22 1.05 2.43 pandas 165 1.25 1.53 Chart† 26 3.54 1.52
cookiecutter 4 1.25 2.00 sanic 3 1.00 1.00 Closure† 131 2.63 1.25
fastapi 16 1.94 2.42 scrapy 38 1.45 1.17 Lang† 64 1.92 1.38
httpie 5 1.00 1.25 spacy 2 1.00 1.00 Math† 106 1.66 1.32
keras 36 1.17 2.37 thefuck 30 1.27 1.24 Time† 26 2.85 1.56

about the explanations of AutoFL, what still needs to be improved, and in this process identify
aspects that future explainable automated debugging techniques should place particular focus on.

4.2 Experimental Details

The experimental details for our study are provided.

4.2.1 Evaluation Dataset. Our experiment is conducted using a total of 798 bugs from 21 open-
source projects as listed in Table 2. We use two different bug benchmarks: Defects4J v1.0 [12]
(Java), chosen to allow comparison with traditional techniques, and BugsInPy [38] (Python), to
demonstrate that AutoFL can quickly be adapted to other languages as well. For Defects4J, all
active 353 bugs in Defects4J v1.0 are used. For BugsInPy, while the core implementation of AutoFL
did not need to be updated, we modified the callable function set, as the tests in BugsInPy tended
to cover a large number of classes, while Python often includes its comments within the function
body. We use the improved BugsInPy dataset by Aguilar et al. [3]; nonetheless, 56 out of 501 bugs
are excluded due to reproducibility issues, leaving 445 bugs for consideration. Further details are
provided in the supplementary material.

4.2.2 AutoFL Default Configurations. For each bug, we run AutoFL five times, i.e., 𝑅 = 5, using the
gpt-3.5-turbo-0613 language model from OpenAI; this number is chosen as we found diminishing
returns for 𝑅 > 5 in a preliminary study we performed on a subset of the bugs from Defects4J.
We also set the maximum number of function interactions to 𝑁 = 10; this number was chosen as
(i) only a small proportion of runs actually use up to 10 runs (less than 10%), and (ii) preliminary
experiments with 𝑁 = 20 caused the LLMs to exceed their context length limits often, dropping
the performance of AutoFL by half. While we treat the gpt-3.5-turbo-0613 results as our ‘main’
results and use them in subsequent analysis, we also present the result of running AutoFL two
times with the gpt-4-0613 model to show performance when using an improved LLM, and to show
that GPT-4 also benefits from our result combination mechanism (Section 3.3). While AutoFL can
function effectively with just one failing test as input, a variety of strategies can be employed for
AutoFL when dealing with multiple failing tests. In our experiment, when multiple failing tests are
present, we employ distinct failing test cases for each run of AutoFL. More specifically, when there
are multiple failing test cases (194 bugs of 798 in total have multiple failing tests), a round-robin
approach is adopted, selecting one failing test case for each run.

4.2.3 Developer Feedback Details. Developers of three companies interested in LLM-based FL
were invited to use the explanations and FL from AutoFL to debug real bugs from open-source
software, and provide qualitative feedback. Specifically, employees of each company who had prior
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Fig. 3. Performance of various FL techniques on the Defects4J and BugsInPy benchmarks.

experience with working with the authors internally recruited other employees who were available
to participate in the experiment. The average participant had more than five years of experience
with software development, and more than 1.8 years of development experience with Python. We
made this choice as there are no clear baselines for explainable FL, and as we believed that providing
explanation design guidelines from developer experience would be beneficial to future work. Prior
to conducting our main study, a pilot study was conducted to obtain feedback and thus improve
the fidelity of our results, as is recommended [16], which helped us streamline the process. Overall,
we could recruit 16 professional developers who could participate in our study in full.

In the study, developers were presented with real-world bugs with failing tests, and in turn, asked
to generate a patch that would fix the bug, similarly to Böhme et al. [5]. We used bugs from the
BugsInPy dataset, as Python developers were easier to recruit than C or Java developers. Developers
were asked to use the provided information, which consisted of an error message, a failing test, FL
results from AutoFL, and critically 10 bug explanations from AutoFL (5 from both GPT-3.5 and
GPT-4, and translated from the original English for participant convenience). The test execution
environment was set up so that participants could freely execute tests and perform print debugging.
Each participant would first go through a tutorial in which they were asked to fix a simple bug and
also presented with the ground-truth patch, so that they could get used to the experiment. In turn,
developers would debug two bugs over the course of an hour, based solely on the error message
and the FL/explanations that AutoFL generated for the bug. After debugging each bug, a number
of multiple-choice questions on the developer’s perception of the problem were posed, which are
made available in the supplementary material. When the developer has made patches for every
bug, or when they deem the bug they are debugging too difficult, we perform a semi-structured
interview in which we ask the developer whether FL and FL explanations would be useful in their
workflow, what their view of the strengths and weaknesses of AutoFL-generated explanations
are, and what they believe an ideal explanation would be. The common themes from developer
responses are analyzed and discussed between two authors, and a final multi-label tagging of each
developer’s response is generated. Based on this tagging, we present the popular themes as a part of
this manuscript, and present those with quotes from developers. Further details about our developer
study can be found in our supplementary material.

5 RESULTS

This section presents the results of our experiments.
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Fig. 4. Performance of AutoFL as 𝑅 increases, for Defects4J and BugsInPy.

5.1 RQ1: FL Efficacy

In Fig. 3, AutoFL is compared with other standalone techniques that report method-level perfor-
mance. For the Defects4J dataset (Fig. 3a), the graph shows that AutoFL, when using GPT-3.5 as
the language model, outperforms SBFL and MBFL, which were the best-performing standalone
FL techniques from Zou et al. [50], on the acc@1 measure. Furthermore, AutoFL outperforms
the state-of-the-art standalone FL technique SmartFL, which was only evaluated on a subset of
Defects4J due to the complex Java features used in Closure [49];7 in contrast, AutoFL could be easily
expanded to a completely different language, Python. However, the performance of AutoFL at
acc@3 and acc@5 lags behind SBFL. This is likely because GPT-3.5 is still a limited LLM; our manual
inspection of GPT-3.5 debugging traces reveals that it has difficulty ‘digging deep’ into a repository
to find bugs. This is further confirmed by our experiment with GPT-4: GPT-4 demonstrates stronger
performance on reasoning benchmarks than GPT-3.5 [27], and similarly AutoFL-GPT4 overcomes
the limitations of GPT-3.5 to consistently achieve better performance relative to all baselines up to
acc@5. Comparing against the Test-GPT3.5 baseline, which prompts GPT-3.5 to predict the fault
location without any function interaction, AutoFL consistently outperforms it, demonstrating that
the function interactions improve the performance of AutoFL. On the Python benchmark BugsInPy,
over which AutoFL was evaluated to demonstrate its multilingual capability, AutoFL-GPT3.5
outperforms SBFL techniques by a substantial margin, as shown in Fig. 3b: AutoFL-GPT3.5 and
AutoFL-GPT4 improved method-level acc@1 by 166.7% and 233.3% when compared with Ochiai.
For BugsInPy, AutoFL is performing on a consistent level with Defects4J, while SBFL is significantly
worse in BugsInPy, as reported by Widyasari et al. [37]. Overall, AutoFL can perform consistently
even while requiring fewer artifacts from the developer and it can be easily adapted to different
languages, indicating the significant potential of LLM-based FL techniques.
Meanwhile, merging more AutoFL runs to get an aggregate result helps improve performance

by a large margin in both Defects4J and BugsInPy, as shown in Fig. 4. In addition, we observe when
using GPT-4, a single run can outperform five aggregated runs of AutoFL-GPT3.5, demonstrating
the potential of improved language models contributing to better FL performance.
Finally, we provide some additional information about the characteristics of AutoFL runs. A

single run (𝑅 = 1) of AutoFL on a single bug on Defects4J using GPT-3.5 took an average of 16.4
seconds with a standard deviation of 10.98 seconds, as shown in Table 3. Together with preparation
(4.87s) and result aggregation (0.37s) for a single bug on average, the average runtime of AutoFL
with five runs was 87.24 seconds. This is faster than what Zou et al. [50] report as the time cost of

7On the same bug dataset, AutoFL still outperformed SmartFL, as shown in the square marker graphs of Fig. 3a.
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Table 3. Execution time (seconds) per bug for AutoFL. Prep. denotes the data preparation phase, which

involves gathering coverage of the failing test cases and obtaining the snippets of covered code.

Benchmark LLM Prep. ( 1 ) 𝑅 = 1 𝑅 = 2 ( 2 ) 𝑅 = 5 ( 2 ) Merge ( 3 ) Total ( 1 + 2 + 3 )

Defects4J GPT-3.5 4.87 16.40 - 82.00 0.37 87.24
GPT-4 152.48 304.96 - 0.52 310.35

BugsInPy GPT-3.5 23.50 34.71 - 173.55 0.28 197.33
GPT-4 65.80 131.6 - 0.20 155.38
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Fig. 5. Function call distribution for AutoFL-GPT3.5.
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Fig. 6. Average number of function calls made by AutoFL-GPT3.5, categorized by whether at least one of the

faulty methods is called in the failing test case and/or exists in the stack trace.

SBFL (112 seconds), indicating that AutoFL can operate as a lightweight FL technique. The runtime
of AutoFL is dependent on the number of function calls it makes; in our experiments, an average
of 5.37 function calls are made to determine the fault location, with a standard deviation of 2.78
calls. The type of function calls made with GPT-3.58 at each step is presented in Fig. 5, and indicates
that the length of inference chains is diverse. Our analysis further explores how the localization
difficulty of bugs is linked to the length of function call sequences. This difficulty is heuristically
measured by whether at least one of the actual faulty methods is directly mentioned in the failing
test code or appears in the stack trace; note that this method cannot evaluate the difficulty of the
35 omission faults that lack a patched method. If AutoFL were capable of using function calls
effectively, AutoFL would perform a deeper search through the function calls for the ‘harder’ bugs
which do not directly expose the faulty method. Indeed, such ‘harder’ bugs tended to result in longer
chains of function calls (Figure 6). In Defects4J and BugsInPy, AutoFL utilizes on average 0.6 and 0.9
8The results of the same analysis for GPT-4 are presented in the supplementary material.
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Table 4. Spearman’s rank correlation coefficients between AutoFL confidence and FL performance metrics in

each benchmark (with ‘*’ denoting p < 0.0001). AutoFL is rerun 5 times using GPT-3.5.

Correlation with Precision@1 Reciprocal Rank Average Precision

Defects4J +0.57* +0.67* +0.70*
BugsInPy +0.52* +0.50* +0.49*

additional function calls repectively to address the hardest bugs, i.e., (False, False), compared to the
easiest bugs, i.e., (True, True). A one-way ANOVA confirmed significant differences (𝑝 < 0.05) in
the mean length of function calls across different bug difficulties. Subsequent pairwise t-tests with
Bonferroni adjustments applied to the p-value threshold (adjusting it to 0.008 for six combinations)
identify which differences are statistically significant, as indicated as gray lines in the figure.

Answer to RQ1: AutoFL shows comparable or superior performance relative to prior standalone
FL techniques with less information, can easily be applied to multiple languages, operates on a
timescale of minutes, and adaptively makes function calls depending on bug characteristics.

5.2 RQ2: Predicting FL Accuracy via AutoFL Confidence

Table 4 presents Spearman’s rank correlation coefficients that illustrate the relationship between
the confidence values and the three FL performance metrics, namely Precision@1, Reciprocal
Rank, and Average Precision, described in Section 4.1. In both benchmark datasets, Defects4J and
BugsInPy, we observe statistically significant positive correlations between the AutoFL confidence
values and the FL performance metrics. A depiction of performance distribution by confidence
bins is presented in the supplementary material. Furthermore, although the correlation is more
pronounced within the Defects4J dataset in comparison to the BugsInPy dataset, the correlation
with Precision@1 remains relatively consistent across both datasets, with respective values of
0.57 and 0.52. We conjecture that the correlation between Confidence and Precision@1 is more
consistent because, unlike other metrics, both are determined solely by the top-ranked prediction.

Answer to RQ2: Our analysis reveals statistically significant positive correlations between the
AutoFL confidence values and FL performance metrics in both benchmark datasets. Consequently,
the confidence value of AutoFL can be used to filter out potentially inaccurate results.

5.3 RQ3: ExplanationQuality

To evaluate the explanations generated by AutoFL, two authors independently rated 300 explana-
tions from Defects4J and then resolved any differences through discussion. The agreement of the
initial evaluations made was 86.5%, and the Cohen’s 𝜅 coefficient used by prior work to measure
inter-rater agreement [34] was 0.55, a fair to good level of agreement [9].

The quality evaluation results are presented in Table 5. In 83.7% of runs, AutoFL could successfully
generate an explanation; in the other cases, either AutoFL had gone over the LLM token limit
or AutoFL had exhausted the function call budget. Regarding the other measures, in 20% of all
runs, AutoFL generated an explanation that described what was causing the bug, and thus would
be helpful for developers (Accurate). Meanwhile, AutoFL would generate at least one inaccurate
statement in 26.3% of all cases (Imprecise). The most common type of explanation was ‘Bland’
(46.7%), in which AutoFL would generate an explanation that described the test and the covered
methods, but did not provide any additional analysis. Aggregating by bug, at least one accurate
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This indicates that the obj argument passed to 
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method to be called, which returns null. 
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NullPointerException.
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NullPointerException.

(...) The test testBigDataSet in the class 
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(a) (b) (c)

Fig. 7. Example explanations from AutoFL that exhibit different qualities. Explanations (b) and (c) are

truncated for clarity.

explanation was generated for 56.7% of all bugs, suggesting that with an appropriate selection of
explanations, developers could benefit from the explanations of AutoFL more often.
In this regard, there is a correlation between FL confidence explored in RQ2 and the average

quality of explanations for a bug, as presented in Table 5, providing hints as to how to selectively
present good explanations. There is a modest improvement in all helpful qualities of explanations
when filtering them by confidence, while the increase in the harmful quality (Imprecise) is negligible.
These results show that there is both promise, and room to improve, when it comes to automatically
identifying helpful explanations from the human perspective, a topic we further discuss in Section 6.

To further clarify these results, we present three AutoFL-generated explanations in Figure 7. In
Figure 7 (a), the explanation is true, but provides no real information about what the underlying
bug is, so it is a ‘bland’ explanation that does not further the interests of the developer. Meanwhile,
in Figure 7 (b), we see a good explanation that is simultaneously accurate, concise, and useful. The
first part of the explanation (green) accurately describes how the error manifested by detailing
which operations culminated in the error. In the next part of the explanation (blue) it goes on to
describe what should be done to fix the issue, which corresponds with the actual developer fix. As
all of the provided information is likely genuinely helpful and there is no extraneous content, the
explanation also qualifies as a concise explanation. Finally, in Figure 7 (c), we present an example
of an explanation that is accurate but also partially imprecise. For this bug, the buggy method
is not immediately called by the failing test, nor visible in the exception call stack. Despite this,
this explanation accurately pinpoints the method call chain leading to the bug (green), and thus is
accurate as it provides information that could help the developer understand why each method
was suggested by AutoFL. However, the fixes suggested by the explanation are imprecise (red), as
they deviate from the actual developer fix. As this imprecise recommendation can be regarded as
extraneous content, the explanation is not concise; nor is it useful, as the suggested fix is wrong.
To understand the circumstances in which AutoFL failed to generate good explanations, we

analyzed the 26 bugs for which no accurate explanations were generated. Overall, we found that
there were four main causes of failure. In 14 cases (53.8% of failing bugs), we found that their tests
relied on custom test helper functions, particularly for the bugs from the Closure project, which
has non-conventional test cases [25]. As the LLM of AutoFL was generally unaware of the precise
semantics of these test cases, it spent most of its time retrieving the helper functions, and less
time inspecting potentially buggy code. This suggests when using AutoFL, ideally tests should be
self-contained; further research is required to incorporate project-specific information effectively.
In the second scenario, AutoFL failed for six bugs as the tests used too many classes and methods
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Table 5. Explanation rating results of AutoFL-GPT3.5

Subset Exists Accurate Imprecise Concise Useful ‘Bland’ Total

All Explanations 83.7% 20.0% 26.3% 9.3% 8.0% 43.0% 300
0.00 ≤ Confidence < 0.25 78.3% 10.0% 24.2% 3.3% 1.7% 46.7% 120
0.25 ≤ Confidence < 0.50 87.5% 23.8% 28.8% 7.5% 11.3% 43.8% 80
0.50 ≤ Confidence < 0.75 81.5% 26.2% 24.6% 16.9% 12.3% 36.9% 65
0.75 ≤ Confidence ≤ 1.00 97.1% 34.3% 31.4% 20.0% 14.3% 40.0% 35

Aggregated By Bug 100% 56.7% 66.7% 31.7% 23.3% 93.3% 60
0.00 ≤ Confidence < 0.25 100% 37.5% 70.8% 16.7% 8.3% 95.8% 24
0.25 ≤ Confidence < 0.50 100% 62.5% 68.8% 31.3% 31.3% 93.8% 16
0.50 ≤ Confidence < 0.75 100% 69.2% 53.8% 46.2% 30.8% 84.6% 13
0.75 ≤ Confidence ≤ 1.00 100% 85.7% 71.4% 57.1% 42.9% 100% 7

for AutoFL to effectively inspect within the 𝑁 = 10 function call budget. In such cases, techniques
such as test case purification may also help reduce the search space [47]. As for the remainder, in
three cases, the buggy methods were so long that they eventually caused a length error for AutoFL;
meanwhile, in three cases the LLM consistently made logical mistakes. The steady improvement
of LLMs may help deal with these problems - indeed, GPT-4 could make correct explanations for
three of these six bugs (one for the context length limit and two for the logical mistakes).

Answer to RQ3: About 20% of AutoFL explanations accurately describe the root cause of the
bug, per a manual assessment; for 56.7% of all bugs, an accurate explanation is generated at least
once. Interestingly, helpful explanations are more common for bugs when AutoFL is confident.

5.4 RQ4: Developer Feedback

Finally, we present a summary of the feedback we received from our semi-structured interviews of
developers, who debugged real-world bugs from the pandas project, sourced from BugsInPy. In
this section, we showcase the common answers from developers on seven key questions; further
responses and analysis can be found in the supplementary material. In this section, we refer to
individual developers using their anonymous animal IDs used in our study, e.g. seal.

Is FL Wanted? We asked if developers wanted to use FL; in our study, we had to clarify that this
meant being provided a list of suspicious code elements without explanations. Of the 16 developers,
13 agreed or conditionally agreed that FL (even without explanations) would help their debugging
efforts. Several developers remarked that the utility of FL would depend on their familiarity with
a project, noting that FL would be particularly helpful when the developer is unfamiliar with
the subject system, and less so when the developer has intimate knowledge. A small number of
developers disagreed that FL would help, as they were confident that they could perform FL based
on the error message. This generally positive attitude, albeit with conditions and reservations, is
similar to what was reported by Kochhar et al. [17] in their survey of developer expectations on FL.
Are FL Explanations Wanted? Critically for our work, we asked developers on whether they

wanted explanations for FL. Four developers described explanations for FL as necessary, while eight
additionally described explanations as useful; in total, twelve developers suggested that they would
want explanations when using FL. Developers commonly believed that explanations would help
them navigate unfamiliar code, and help them think through or fix the bug; for example, parrot
noted that “with just a location suggested, it’s vague how to fix the bug; with the cause of the bug
explained, it was easier to think”. Meanwhile, developers also expressed concern about explanations,
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which were generally conditional: one developer worried about the accuracy of explanations on
difficult bugs, and four thought that explanations would be unnecessary for easy code. On the
flip side, this shows that every developer agreed that explanations would be helpful in unfamiliar
projects or difficult bugs, as long as the explanation is reasonably accurate.

What were the strengths of explanations from AutoFL? Based on the explanations suggested
in our experiments, we asked developers to describe the strengths of the explanations generated by
AutoFL. Developers appreciated that the explanations described the intention of the function(s)
under test, and (when fixes were provided) generally liked the fixes suggested by AutoFL. For
example, koala noted that “the error message alone didn’t provide much of a starting point; by
following and explaining the execution context of the bug, it was more convenient to solve the
debugging problems”. The most common theme was that developers liked a natural language
explanation of the error message, with five developers liking this aspect - for example, turtle
described the explanations as “less clunky when compared to terminal messages, and more human-
friendly; even if it ultimately takes longer to read the message, it felt better.”
What was unnecessary in the explanations of AutoFL? However, the same feature was

also seen as unnecessary as well. Two developers thought that the error message explanation
did not aid their understanding of the bug, suggesting customization or compartmentalization
in explanations could help improve user experience in general; we discuss this issue in greater
depth in our discussion of the ideal explanation. Among developers who said that there was
unnecessary content, most said that the overlapping content in the explanations (both between
the ten explanations that we provided per bug, and within each explanation) was unnecessary,
and that it would be helpful to summarize explanations with the same content. One suggestion
was that clustering similar explanations together would be another way of improving developer
consumption of explanations. Outside of the overlapping content, most developers (10) did not find
anything to remove from the explanations; they often noted that unnecessary content could be
quickly skipped as well, indicating that it was not a significant problem.
What was confusing in the explanations of AutoFL? As the explanations are generally

presented in a confident tone, there is a risk that developers could be confused by inaccurate
explanations. Indeed, while six developers found nothing confusing about the explanations, four
others thought that the suggestions of the explanations to fix tests were confusing, and two
developers noted that the patches or fault locations suggested by the explanations were insufficient
to fix the bug, leading to confusion and wasting their time.
What is the ideal explanation? We asked developers about what their ideal explanation of a

bug or FL results would be, to further identify how the explanations of AutoFL could improve. Five
developers noted that having a clear template for explaining the bug and the fix would have helped
process the explanation; for example, koala suggested a tripartite template which would clearly
show “where the bug happened, why this is likely problematic behavior, and how to fix the bug”.
Such a template would also help accommodate the most commonly identified ideal features in a bug
explanation - (i) the logic of the failure, requested by five developers; (ii) the original intention of
the code/test, requested by four developers; (iii) and finally a suggested patch, which was included
in the ideal explanation of 13 developers and was by far the most popular feature in an ideal bug/FL
explanation. Furthermore, four developers suggested that having real dynamic values incorporated
in the explanation would help them understand the flow of the bug: koala noted that “I had to
keep track of what the variable values were for the bug-revealing test manually; if this information
were integrated into the explanation, that would be more convenient”. Finally, when asked about
the ideal number of explanations presented to the developer, 11 developers thought that the ten
explanations presented in the experiment were too much, and wanted a summary. Nonetheless,
they were open to seeing multiple explanations - chicken noted that “as long as the content is
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different, having multiple options to choose from is good as well”. In this context, dragon suggested
that ideally, explanations would have a confidence value, which would help developers choose
between multiple explanations.

In what order did developers read the explanations? We asked developers whether they had
any heuristics on how to choose which explanation to read. While many answers were given, we
focused on the two most common answers. First, four developers answered that they had looked at
the FL list, and looked at explanations that supported the most likely location first. On the other
hand, seven developers answered that they simply looked at the explanations from top to bottom,
without consulting the FL list or any other information. This suggests that it would likely improve
user experience and debugging time if the quality of explanations could be automatically assessed,
and high-quality explanations could be presented first.

Answer to RQ4: Developers were generally supportive of explainable FL, and suggested that the
explanations of AutoFL were helpful by explaining the error message and the intention of each
function. Meanwhile, developers disliked the overlap in content in the presented explanations,
and found some explanations inaccurate. Ideally, developers wanted templated explanations that
would help them quickly find what they wanted, such as the bug logic or patch.

6 FUTURE DIRECTIONS: BETTER QUALITY ESTIMATION FOR AUTOFL

The results of RQ4make clear the need for selecting reliable bug explanations. The natural follow-up
question is whether there are any features that can predict the quality of explanations. Explanations,
being long-form text, are more difficult to automatically evaluate: they are not directly executable,
nor is it possible to use self-consistency [35] to check which are good explanations, as explanations
can syntactically differ while having similar semantic content. One way of tackling this is to get
downstream artifacts that can be subjected to evaluation using self-consistency, such as FL predic-
tions; as demonstrated in RQ2, there is a correlation between FL confidence and explanation quality.
On the other end, we may make executable downstream artifacts, and see whether explanations
with high-quality executable artifacts are generally of higher quality themselves. In this section,
we explore this question by presenting the preliminary results of such a prediction task on the
explanations of AutoFL, based on the following features:

• Test Score: Based on a bug explanation from AutoFL, GPT-3.5 is repeatedly prompted to
generate (i) a failing test that reproduces the bug and (ii) a passing test similar to the bug-
reproducing test. The explanation is scored by the ratio of tests that behave as expected (i.e.,
the generated bug-reproducing test should fail). The intuition is that a good explanation of the
bug could allow an LLM to generate bug-reproducing tests [14].

• APR Score: Based on a bug explanation and the code of buggy methods suggested by AutoFL,
GPT-3.5 is repeatedly prompted to generate a patch that would fix the bug. The explanation is
scored by the ratio of partial fixes (e.g., the ratio of patches that make at least one previously
failing test pass). The intuition is that a good explanation of the bug could ease patch generation
when using an LLM.

• GPT Scores: GPT-3.5 is prompted to rate an explanation from AutoFL on the same four quality
measures (Accurate, Imprecise, Concise, Useful) that we used in RQ3 on a five-point Likert
scale. The intuition is that an LLM may be capable of ‘reflection’ on its own answers [31], and
be capable of correctly identifying which explanations are accurate.

• Explanation Length: An explanation is scored by its length. We include this as a simple
baseline to evaluate the validity of any results from the aforementioned metrics.
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Table 6. Spearman Correlation between explanation quality predictors and actual quality. Results with

𝑝 < 0.01 are marked with *, and results significant with 𝑝 < 0.001 are marked with **.

name Test Score APR Score GPTuseful Length

Accurate +0.2358** +0.1946* +0.3759** +0.3009**
‘Wrong’ (only imprecise) +0.0408 −0.0643 +0.3266** +0.3271**
Useful +0.2635** +0.1942* +0.2371** +0.1585
‘Bland’ −0.2364** −0.1105 −0.6026** −0.5391**
FL Accurate +0.2737** +0.4923** +0.1437 +0.1528
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Fig. 8. Relationship between dynamic scores and FL performance.

The non-parametric Spearman’s rank correlation coefficient between these features and the
quality of explanations as evaluated in RQ3 is presented in Table 6. First, among the dynamic
features, the test score shows a statistically significant correlation with positive explanation qualities
such as ‘Accurate’, while showing a low correlation for ‘Wrong’. APR score shows similar correlation
characteristics, but on a smaller magnitude, as partial patches were rarer (55 explanations from
our manual examination led to a partial patch), and a slightly negative correlation with wrong
explanations. Overall, while dynamic features show promise in identifying truthful explanations,
their correlation as of now is not strong enough to fully rely on. More detailed tables that present
bug-aggregated and bug-controlled correlation values are presented in the supplementary material.
Among the GPT Scores, only GPTuseful showed interesting trends; it showed a significant cor-

relation (𝑝 < 0.001) with every quality, including ‘Wrong’, suggesting that GPT-3.5 will rate any
explanation that is detailed as useful. The Length feature provides a useful comparison as well:
like GPTuseful, Length shows a significant correlation with every quality (except ‘Useful’), and the
correlation between Length and GPTuseful was also significant at 0.49. As a result, further research
needs to be conducted to make pure LLM-based evaluation of LLM-generated explanations viable.

During the evaluation, the significant correlation between both of the dynamic scores (Test Score
and APR score) and FL accuracy (bottom row of Table 6, Fig. 8a) piqued our interest: could dynamic
scores be used to more accurately predict AutoFL’s performance? To explore this, we conducted
experiments that boosted scores of methods using the test score and APR as in Eq. (3), where 𝑏𝑜𝑜𝑠𝑡𝑖
is either the test score or the APR score of the 𝑖-th explanation. Intuitively, if an AutoFL run
has a higher dynamic score, the methods predicted in that run get a greater boost. Using APR to
boost FL bears similarities to previous debugging work, such as MUSE [26] or ProFL [22], while
the combination of test generation and FL has not yet been explored to the best of our knowledge.

𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 (𝑚) =𝑚𝑖𝑛(1, 𝑠𝑐𝑜𝑟𝑒 (𝑚) ×
∏

{1≤𝑖≤𝑅 |𝑚∈𝑟𝑖 }
(1 + 𝑏𝑜𝑜𝑠𝑡𝑖 )) (3)
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Fig. 8b presents the precision-recall curve for predicting Precision@1 based on the confidence
thresholding on the Defects4J dataset. The new confidence values which incorporate dynamic
scores are more accurate estimators of Precision@1 than the original confidence score, with the
area under the curve (AUC) increased by up to 5.4% using the APR score. This shows that dynamic
features, i.e., the performance of the downstream tasks, can help refine AutoFL results as well.

Future Directions: Preliminary results show that dynamic evaluation of explanations has the
potential to identify both helpful explanations and accurate FL.

7 THREATS TO VALIDITY

Internal Validity The computation time of AutoFL, which relies on OpenAI server conditions and
the random nature of LLMs, is a threat. To mitigate this, the time cost of AutoFL was averaged over
multiple runs. Secondly, in evaluating the quality of explanations generated by AutoFL, human
error in the validation process is possible. To address this, two authors independently assessed
explanations and resolved disagreements, enhancing the reliability of the assessment. Lastly, there
is a concern about data leakage, e.g. the possibility of bug-fixing commits being contained in the
training data of GPT models. However, the comparison results of AutoFL with the Test-GPT3.5
baseline in RQ1, which shares the same model but does not interact with the functions at all, suggest
that AutoFL’s performance is not solely due to model memorization of the training data.
Construct Validity To gather developer feedback, we engaged with professional developers to
assess their experience with AutoFL. Due to security reasons, these developers tested AutoFL on
an open-source project (pandas) rather than the projects that they are working on. Consequently,
their responses and impressions may not entirely reflect the experiences that developers would
have during real-world debugging in their work projects.
External Validity Our evaluation of AutoFL primarily focused on programs equipped with unit
test cases, utilizing both Java and Python benchmarks. While our findings can be generalized
within these contexts, they may not extend to other programming languages or different levels
of testing, such as system or integration test cases. Additionally, in our study, we interviewed 16
professional developers from three IT companies to gather insights into their experiences with
AutoFL. While this provided valuable qualitative feedback, the responses from these participants
may not be fully representative of all developers, given the diverse perspectives in the software
industry. Furthermore, the performance of AutoFL can be affected by various factors, including
the choice of the language model.

8 CONCLUSION

This paper presents AutoFL, an explainable LLM-based FL technique that has many useful char-
acteristics that make it easier for practitioners to adopt, with particular strengths being its low
requirement of software artifacts (only a single failing test is required), reasonable runtime, and
critically its ability to generate explanations. Our evaluation shows the strong performance of
AutoFL as a standalone FL tool, with AutoFL outperforming the baselines that we compare against.
The explanations generated by AutoFL required more nuanced evaluation: manual evaluation of
the explanations revealed AutoFL could generate an accurate explanation for 56.7% of all bugs.
Surveying developers on what they wanted in bug explanations, many developers called for struc-
tured explanations that explain the intention of tests, how the bug happened, and how to fix a
bug; furthermore, they were willing to see only a few explanations. Motivated by this need to pick
explanations, we present preliminary results on automatically identifying high-quality explanations
suggest that while dynamic features show promise, further research is necessary. Based on these
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results, we hope to continue investigating how to consistently make useful explanations of bugs,
which is one of the unique ways in which LLMs could benefit practitioners.

DATA AVAILABILITY

Our source code and data are publicly available at: https://figshare.com/s/a458acb1ac298f584a24.
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