
MOAD
Modeling Observation-based Approximate Dependency

Seongmin Lee
KAIST

David Binkley
Loyola University Maryland

Robert Feldt
Chalmers University of

Technology

Nicolas Gold
University College London

Shin Yoo
KAIST

Program Dependency Analysis

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

Program

2

e1 e2
depends on

∀ ∈e1,e2 E
Program elements

Program Dependency Analysis
• Fault comprehension

- Hidden dependencies in program comprehension and change
propagation, Zhifeng Yu et al.

• Software testing
- Semantics guided regression test cost reduction, Binkley et al.

• Software maintenance
- Using program slicing in software maintenance, Gallagher et al.

• Security
- Platform-independent dynamic taint analysis for javascript,
Karim et al.

• Debugging
- Do programmers do change impact analysis in debugging?,
Jiang et al.

etc.
2

e1 e2
depends on

∀ ∈e1,e2 E
Program elements

3

E EStatic Analysis

3

E EStatic Analysis

Working with external
database Multi-lingual programLarge & complex system

3

E EStatic Analysis

Working with external
database Multi-lingual programLarge & complex system

Observation-based Slicing (ORBS)

4

e1 ec

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

= 42

Observation-based Slicing (ORBS)

4

e1 ec
Compile & Execute

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ece1

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ece1 = 42
Compile & Execute

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ece1 = 42
Compile & Execute

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ece3

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ec
Compile & Execute

E
Same trajectory

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ec
Compile & Execute

E
Same trajectory

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Language
independentModel-free

Dynamic

Observation-based Slicing (ORBS)

4

ec
Compile & Execute

E
Same trajectory

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ec
Compile & Execute

E
Same trajectory

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

Observation-based Slicing (ORBS)

4

ec
Compile & Execute

E
Same trajectory

Binkley et al., "ORBS: Language-independent Program Slicing”, FSE’14

5

Static Analysis

ecE
Same trajectory

E E
ORBS

5

Static Analysis

ecE
Same trajectory

E E
ORBS

EE
Lightweight dynamic analysis

+
Modeling dependency

MOAD
Modeling Observation-based Approximate Dependency

EE

MOAD

7

ece1

= 42

MOAD

7

ece1
Compile & Execute

MOAD

7

e1

e2

e3

e4

en

…

MOAD

7

e1

= 42

Compile & Execute

e2

e3

e4

en

…

= 3.141592

= “foo”

= bar()

MOAD

8

e2e1 = 42

MOAD

8

e2e1 = 42

MOAD

8

e2e1
e3

= 42

MOAD

8

e2
e3

Compilation Error!

e1

e1, e3

MOAD

8

e2

MOAD

8

e2e1, e3 = 42
Compile & Execute

MOAD

9

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

MOAD

9

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

e2

e3

e4

en

…

MOAD

9

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

= 42

Compile & Execute

= 3.141592

= “foo”

= bar()

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

e2

e3

e4

en

…

MOAD

9

e1,e3
e1,e2 e1

e3e1,e2,e4

e4
e2

e2,e4

e5

MOAD

9

E E

MOAD

10

ORBS
• Try iterative, sequential deletion

attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOAD

10

ORBS

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

• Try iterative, sequential deletion
attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOAD

10

ORBS

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

• Try iterative, sequential deletion
attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOAD

10

ORBS

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

• Try iterative, sequential deletion
attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOAD

10

ORBS

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

• Try iterative, sequential deletion
attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

D
ep

en
de

nc
e

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

MOAD

10

ORBS

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {

 int i = 1;
 while (i < 11) {

 i = i + 1;
 }

 printf(“%d\n”, i);
}

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

• Try iterative, sequential deletion
attempts

• Relation with respect to a single criterion

• Exact (1-minimal), compilable,
executable slice

• Observe various independent
partially deleted programs’ behavior

• Program’s overall dependency model

• An approximated dependency

D
ep

en
de

nc
e

MOAD - Deletable Units

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

11

MOAD - Deletable Units

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

⋮

ui-1

ui

D
el

et
ab

le
 U

ni
ts

11

MOAD - Deletable Units

int main() {
 int sum = 0;
 int i = 1;
 while (i < 11) {
 sum = sum + i;
 i = i + 1;
 }
 printf(“%d\n”, sum);
 printf(“%d\n”, i);
}

u1

u2

u3

u4

⋮

ui-1

ui

D
el

et
ab

le
 U

ni
ts

11

u1 u2 u3 u4 … ui-1 ui

0 0 0 0 … 0 0

• 1 : Unit deleted

• 0 : Unit remains

Original program

MOAD - Deletion Generation Scheme

12

MOAD - Deletion Generation Scheme

u1 u2 u3 u4 … ui-1 ui

0 0 0 0 … 0 0

1 0 0 0 … 0 0

0 1 0 0 … 0 0

0 0 1 0 … 0 0

0 0 0 1 … 0 0

0 0 0 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

1) 1-hot

12

MOAD - Deletion Generation Scheme

u1 u2 u3 u4 … ui-1 ui

0 0 0 0 … 0 0

1 0 0 0 … 0 0

0 1 0 0 … 0 0

0 0 1 0 … 0 0

0 0 0 1 … 0 0

0 0 0 0 … 0 0

… … … … … … …

0 0 0 0 … 0 1

1) 1-hot

u1 u2 u3 u4 … ui-1 ui

… … … … … … ...

1 1 0 0 … 0 0

1 0 1 0 … 0 0

1 0 0 1 … 0 0

… … … … … … …

0 1 0 1 … 0 0

… … … … … … …

0 0 0 0 … 1 1

2) 2-hot

+

12

u1 u2 u3 u4 … ui-1 ui v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 0

0 1 0 0 … 0 0 1 1 0 … 1

0 0 1 0 … 0 0 1 1 1 … 0

0 0 0 1 … 0 0 1 1 0 … 1

⋮ ⋮
0 0 1 0 … 0 1 1 1 1 … 0

0 1 1 1 … 0 0 0 0 0 … 0

1 0 0 0 … 1 0 0 0 0 … 0

O
bserved behavior

Response

• 1 : Same behavior

• 0 : Compile error or  
 different behavior

Pa
rt

ia
lly

 d
el

et
ed

 p
ro

g.

13

u1 u2 u3 u4 … ui-1 ui v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 0

0 1 0 0 … 0 0 1 1 0 … 1

0 0 1 0 … 0 0 1 1 1 … 0

0 0 0 1 … 0 0 1 1 0 … 1

⋮ ⋮
0 0 1 0 … 0 1 1 1 1 … 0

0 1 1 1 … 0 0 0 0 0 … 0

1 0 0 0 … 1 0 0 0 0 … 0

O
bserved behavior

Response

• 1 : Same behavior

• 0 : Compile error or  
 different behavior

Pa
rt

ia
lly

 d
el

et
ed

 p
ro

g.

13

u1 u2 u3 u4 … ui-1 ui v1 v2 v3 … vj

0 0 0 0 … 0 0 1 1 1 … 1

1 0 0 0 … 0 0 0 0 0 … 0

0 1 0 0 … 0 0 1 1 0 … 1

0 0 1 0 … 0 0 1 1 1 … 0

0 0 0 1 … 0 0 1 1 0 … 1

⋮ ⋮
0 0 1 0 … 0 1 1 1 1 … 0

0 1 1 1 … 0 0 0 0 0 … 0

1 0 0 0 … 1 0 0 0 0 … 0

O
bserved behavior

Response

Pa
rt

ia
lly

 d
el

et
ed

 p
ro

g.

13

14

Tr
ai

ni
ng

 d
at

a

u1 u2 u3 u4 … ui-1 ui vk

0 0 0 0 … 0 0 1

1 0 0 0 … 0 0 0

0 1 0 0 … 0 0 0

0 0 1 0 … 0 0 1

0 0 0 1 … 0 0 0

0 0 1 0 … 0 1 1

… … … … … … … …

1 0 0 0 … 1 0 0

14

Tr
ai

ni
ng

 d
at

a

u1 u2 u3 u4 … ui-1 ui vk

0 0 0 0 … 0 0 1

1 0 0 0 … 0 0 0

0 1 0 0 … 0 0 0

0 0 1 0 … 0 0 1

0 0 0 1 … 0 0 0

0 0 1 0 … 0 1 1

… … … … … … … …

1 0 0 0 … 1 0 0

Statistical model

u1 u2 u3 u4 … ui-1 ui

0 0 1 0 … 0 1
vk

1M : →

14

Statistical model

u1 u2 u3 u4 … ui-1 ui

0 0 1 0 … 0 1
vk

1M : →

Dep(M, vk) = {ui} vkui
Infer dependency

MOAD - Inference Algorithm

15

• Once-success (O)

Algorithm 2: Inference phase
input : P : an input program

C: a set of slicing criteria
O: a set of observations
dsg mdl: a design of model (one of O,L,B)

output: Ps : set of inferred slices; one for each slicing
criterion ck 2 C

1 M dsg mdl.TRAIN (O)
2 Ps {}
3 for ck 2 C do

4 deletion M (ck)
5 Pk APPLY (P, deletion)
6 Ps Ps [{Pk}
7 return Ps

convenience, hereafter we use “0” and “1” to denote “FALSE”
and TRUE”, respectively.

Once Success (O): The Once Success model explicitly
follows the aforementioned assumption. Assume subprogram
P

0 is obtained from program P by removing deletion unit um.
If P

0 preserves the trajectory of the slicing criterion ck, the
model removes um from the slice of ck. More formally, the
Once Success model, MO, trained with observations O, infers
the deletion of the slice of ck as follows:

MO (ck) [m] =

(
1, if 9 (d, r) 2 O s.t. d [m] = 1 and r [k] = 1

0, otherwise

where d [m] represents the m
th element of deletion vector

s and r [k] represents the k
th element of response vector r.

Thus, d [m] = 1 and r [k] = 1 represents that unit m has been
deleted and the response for criterion k is unchanged.

Logistic (L): The Logistic model regards the response ele-
ment, r [k] (for slicing criterion ck) as a dependent variable and
the elements of the deletion, d, as the independent variables.
Because the variables are binary values, they are modeled
using logistic regression,

r [k] ⇡ L(d,�k),

where the elements of �k are the coefficients of the regression.
The sign of each coefficient is used to determine if the
corresponding unit is removed to preserve the slicing criterion
ck. If �k [m], the m

th coefficient of �k, has a positive value,
um is more likely to be removed from the slice, while a
negative value indicates that um is less likely to be removed
from the slice. More formally, ML, the Logistic model, infers
the deletion vector for the slice taken with respect to ck as
follows:

ML (ck) [m] =

(
0, if �k [m] 0

1, if �k [m] > 0
.

Bayesian (B): The final model we consider uses Bayesian
inference. We assume that P (ck|um) denotes the conditional
probability of preserving the trajectory of ck when the unit
um has been deleted. From the observations, O, we estimate
P̂ (ck|um) as follows:

P (ck|um) = P (preserves trajectory of ck|um has been deleted)
= P (r [k] = 1|d [m] = 1)

=
P (r [k] = 1, d [m] = 1)

P (d [m] = 1)

P̂ (ck|um) =
#(r [k] = 1 and d [m] = 1)/|O|

#(d [m] = 1)/|O|

=
#(r [k] = 1 and d [m] = 1)

#(d [m] = 1)
,

where #(cond) is a number of observations in O satisfying
the condition cond. Formally, MB, the Bayesian model, infers
the deletion of the slice of ck as follows:

MB (ck) [m] =

(
0, if P̂ (ck|um) µi2{1..|U |}(P̂ (ck|ui))

1, if P̂ (ck|um) > µi2{1..|U |}(P̂ (ck|ui)),

where µi2{1..|U |}(P̂ (ck|ui)) is an average value of the esti-
mated probability.

IV. EXPERIMENT SETUP

A. Research Questions
We evaluate MOAD by investigating the following four

research questions.

RQ1. Viability: Do the learned models capture program
dependence information?

To ascertain if our approach is viable we compare the
learned models’ ability to produce slices against that of a
random slicer. If none of the models can outperform a random
slicer then there is no reason to consider them further.

RQ2. Impact of the inference model: Assuming that more
than one model is viable, how does the performance of the
viable models compare?

To study RQ2 we consider the ability of each model to
compute program slices. Because the models are trained with
runtime information, they approximate dynamic slices. The
most closely related dynamic slicing approach is observational
slicing. As benchmarks we consider the slices produced by
two observational slicing implementations W-ORBS [11] and
T-ORBS [13], [14]. While these two are expected to produce
more accurate slices than MOAD, they are also expected to
take longer to do so.

When considering RQ2, performance is compared in terms
of both slice precision, measured in lines of code, and slicing
effort, measured as the number of observations required.

RQ3. Performance compared to ORBS: For the best in-
ference model, how well does MOAD perform compared to
ORBS?

Based on the results from RQ2, we compare the perfor-
mance of ORBS and MOAD when using the best of the viable
models. Parallel to RQ2, effort is measured in terms of the
number of observations required. However, for precision, we
take a more refined approach and count both missing and
excess lines relative to the W-ORBS slice.

ui vk

1 1
If the behavior of is preserved at least once when is deleted,
then Is independent from .

vk ui
vk ui

vkui

log
vk

1 − vk
= β0 + β1u1 + β2u2 + ⋯ + βiui

MOAD - Inference Algorithm

16

• Logistic regression (O)

Algorithm 2: Inference phase
input : P : an input program

C: a set of slicing criteria
O: a set of observations
dsg mdl: a design of model (one of O,L,B)

output: Ps : set of inferred slices; one for each slicing
criterion ck 2 C

1 M dsg mdl.TRAIN (O)
2 Ps {}
3 for ck 2 C do

4 deletion M (ck)
5 Pk APPLY (P, deletion)
6 Ps Ps [{Pk}
7 return Ps

convenience, hereafter we use “0” and “1” to denote “FALSE”
and TRUE”, respectively.

Once Success (O): The Once Success model explicitly
follows the aforementioned assumption. Assume subprogram
P

0 is obtained from program P by removing deletion unit um.
If P

0 preserves the trajectory of the slicing criterion ck, the
model removes um from the slice of ck. More formally, the
Once Success model, MO, trained with observations O, infers
the deletion of the slice of ck as follows:

MO (ck) [m] =

(
1, if 9 (d, r) 2 O s.t. d [m] = 1 and r [k] = 1

0, otherwise

where d [m] represents the m
th element of deletion vector

s and r [k] represents the k
th element of response vector r.

Thus, d [m] = 1 and r [k] = 1 represents that unit m has been
deleted and the response for criterion k is unchanged.

Logistic (L): The Logistic model regards the response ele-
ment, r [k] (for slicing criterion ck) as a dependent variable and
the elements of the deletion, d, as the independent variables.
Because the variables are binary values, they are modeled
using logistic regression,

r [k] ⇡ L(d,�k),

where the elements of �k are the coefficients of the regression.
The sign of each coefficient is used to determine if the
corresponding unit is removed to preserve the slicing criterion
ck. If �k [m], the m

th coefficient of �k, has a positive value,
um is more likely to be removed from the slice, while a
negative value indicates that um is less likely to be removed
from the slice. More formally, ML, the Logistic model, infers
the deletion vector for the slice taken with respect to ck as
follows:

ML (ck) [m] =

(
0, if �k [m] 0

1, if �k [m] > 0
.

Bayesian (B): The final model we consider uses Bayesian
inference. We assume that P (ck|um) denotes the conditional
probability of preserving the trajectory of ck when the unit
um has been deleted. From the observations, O, we estimate
P̂ (ck|um) as follows:

P (ck|um) = P (preserves trajectory of ck|um has been deleted)
= P (r [k] = 1|d [m] = 1)

=
P (r [k] = 1, d [m] = 1)

P (d [m] = 1)

P̂ (ck|um) =
#(r [k] = 1 and d [m] = 1)/|O|

#(d [m] = 1)/|O|

=
#(r [k] = 1 and d [m] = 1)

#(d [m] = 1)
,

where #(cond) is a number of observations in O satisfying
the condition cond. Formally, MB, the Bayesian model, infers
the deletion of the slice of ck as follows:

MB (ck) [m] =

(
0, if P̂ (ck|um) µi2{1..|U |}(P̂ (ck|ui))

1, if P̂ (ck|um) > µi2{1..|U |}(P̂ (ck|ui)),

where µi2{1..|U |}(P̂ (ck|ui)) is an average value of the esti-
mated probability.

IV. EXPERIMENT SETUP

A. Research Questions
We evaluate MOAD by investigating the following four

research questions.

RQ1. Viability: Do the learned models capture program
dependence information?

To ascertain if our approach is viable we compare the
learned models’ ability to produce slices against that of a
random slicer. If none of the models can outperform a random
slicer then there is no reason to consider them further.

RQ2. Impact of the inference model: Assuming that more
than one model is viable, how does the performance of the
viable models compare?

To study RQ2 we consider the ability of each model to
compute program slices. Because the models are trained with
runtime information, they approximate dynamic slices. The
most closely related dynamic slicing approach is observational
slicing. As benchmarks we consider the slices produced by
two observational slicing implementations W-ORBS [11] and
T-ORBS [13], [14]. While these two are expected to produce
more accurate slices than MOAD, they are also expected to
take longer to do so.

When considering RQ2, performance is compared in terms
of both slice precision, measured in lines of code, and slicing
effort, measured as the number of observations required.

RQ3. Performance compared to ORBS: For the best in-
ference model, how well does MOAD perform compared to
ORBS?

Based on the results from RQ2, we compare the perfor-
mance of ORBS and MOAD when using the best of the viable
models. Parallel to RQ2, effort is measured in terms of the
number of observations required. However, for precision, we
take a more refined approach and count both missing and
excess lines relative to the W-ORBS slice.

u1 u2 u3 u4 … ui-1 ui vk

0 0 0 0 … 0 0 1

1 0 0 0 … 0 0 0

0 1 0 0 … 0 0 1

… … … … … … … …

1 0 0 0 … 1 0 0

Observed data

Coefficients represent the
relative impact on dependence

vkui
if βi ≤ 0

if βi > 0

If , the coefficient for of the logistic regression for , is larger than 0,
then Is independent from .

βi ui vk
vk ui

MOAD - Inference Model

17

• Bayesian inference (O)

Algorithm 2: Inference phase
input : P : an input program

C: a set of slicing criteria
O: a set of observations
dsg mdl: a design of model (one of O,L,B)

output: Ps : set of inferred slices; one for each slicing
criterion ck 2 C

1 M dsg mdl.TRAIN (O)
2 Ps {}
3 for ck 2 C do

4 deletion M (ck)
5 Pk APPLY (P, deletion)
6 Ps Ps [{Pk}
7 return Ps

convenience, hereafter we use “0” and “1” to denote “FALSE”
and TRUE”, respectively.

Once Success (O): The Once Success model explicitly
follows the aforementioned assumption. Assume subprogram
P

0 is obtained from program P by removing deletion unit um.
If P

0 preserves the trajectory of the slicing criterion ck, the
model removes um from the slice of ck. More formally, the
Once Success model, MO, trained with observations O, infers
the deletion of the slice of ck as follows:

MO (ck) [m] =

(
1, if 9 (d, r) 2 O s.t. d [m] = 1 and r [k] = 1

0, otherwise

where d [m] represents the m
th element of deletion vector

s and r [k] represents the k
th element of response vector r.

Thus, d [m] = 1 and r [k] = 1 represents that unit m has been
deleted and the response for criterion k is unchanged.

Logistic (L): The Logistic model regards the response ele-
ment, r [k] (for slicing criterion ck) as a dependent variable and
the elements of the deletion, d, as the independent variables.
Because the variables are binary values, they are modeled
using logistic regression,

r [k] ⇡ L(d,�k),

where the elements of �k are the coefficients of the regression.
The sign of each coefficient is used to determine if the
corresponding unit is removed to preserve the slicing criterion
ck. If �k [m], the m

th coefficient of �k, has a positive value,
um is more likely to be removed from the slice, while a
negative value indicates that um is less likely to be removed
from the slice. More formally, ML, the Logistic model, infers
the deletion vector for the slice taken with respect to ck as
follows:

ML (ck) [m] =

(
0, if �k [m] 0

1, if �k [m] > 0
.

Bayesian (B): The final model we consider uses Bayesian
inference. We assume that P (ck|um) denotes the conditional
probability of preserving the trajectory of ck when the unit
um has been deleted. From the observations, O, we estimate
P̂ (ck|um) as follows:

P (ck|um) = P (preserves trajectory of ck|um has been deleted)
= P (r [k] = 1|d [m] = 1)

=
P (r [k] = 1, d [m] = 1)

P (d [m] = 1)

P̂ (ck|um) =
#(r [k] = 1 and d [m] = 1)/|O|

#(d [m] = 1)/|O|

=
#(r [k] = 1 and d [m] = 1)

#(d [m] = 1)
,

where #(cond) is a number of observations in O satisfying
the condition cond. Formally, MB, the Bayesian model, infers
the deletion of the slice of ck as follows:

MB (ck) [m] =

(
0, if P̂ (ck|um) µi2{1..|U |}(P̂ (ck|ui))

1, if P̂ (ck|um) > µi2{1..|U |}(P̂ (ck|ui)),

where µi2{1..|U |}(P̂ (ck|ui)) is an average value of the esti-
mated probability.

IV. EXPERIMENT SETUP

A. Research Questions
We evaluate MOAD by investigating the following four

research questions.

RQ1. Viability: Do the learned models capture program
dependence information?

To ascertain if our approach is viable we compare the
learned models’ ability to produce slices against that of a
random slicer. If none of the models can outperform a random
slicer then there is no reason to consider them further.

RQ2. Impact of the inference model: Assuming that more
than one model is viable, how does the performance of the
viable models compare?

To study RQ2 we consider the ability of each model to
compute program slices. Because the models are trained with
runtime information, they approximate dynamic slices. The
most closely related dynamic slicing approach is observational
slicing. As benchmarks we consider the slices produced by
two observational slicing implementations W-ORBS [11] and
T-ORBS [13], [14]. While these two are expected to produce
more accurate slices than MOAD, they are also expected to
take longer to do so.

When considering RQ2, performance is compared in terms
of both slice precision, measured in lines of code, and slicing
effort, measured as the number of observations required.

RQ3. Performance compared to ORBS: For the best in-
ference model, how well does MOAD perform compared to
ORBS?

Based on the results from RQ2, we compare the perfor-
mance of ORBS and MOAD when using the best of the viable
models. Parallel to RQ2, effort is measured in terms of the
number of observations required. However, for precision, we
take a more refined approach and count both missing and
excess lines relative to the W-ORBS slice.

P (vk |ui) = P (vk behaves the same |ui has been deleted)
= P(vk = 1 |ui = 1)

=
P(vk = 1, ui = 1)

P(ui = 1)

̂P (vk |ui) =
#(vk = 1 and ui = 1)/ |O |

#(ui = 1)/ |O |

=
#(vk = 1 and ui = 1)

#(ui = 1)
Estimate with the frequency
 of behavior preservation

vkui
if ̂P (vk |ui) ≤ μ

if ̂P (vk |ui) > μ

: Average of the probability over unitsμ

If the behaves the same | has been deleted is larger than the mean,
then Is independent from .

P(vk ui)
vk ui

MOAD
2 deletion generation schema X 3 inference algorithms

18

MOAD
2 deletion generation schema X 3 inference algorithms

ORBS

18

V.S. • Number of observations needed
• Size of the slices
• Difference of the slices

Program Slicing
- For all numeric variables

MOAD
2 deletion generation schema X 3 inference algorithms

ORBS
Line of text level

Statement level

18

V.S. • Number of observations needed
• Size of the slices
• Difference of the slices

Program Slicing
- For all numeric variables

MOAD
2 deletion generation schema X 3 inference algorithms

ORBS
Line of text level

Statement level

T-ORBS
Statement level

18

V.S. • Number of observations needed
• Size of the slices
• Difference of the slices

Program Slicing
- For all numeric variables

Gold et al., "Generalized Observational Slicing for Tree-Represented Modelling Languages”, FSE’17

MOAD
2 deletion generation schema X 3 inference algorithms

ORBS
Line of text level

Statement level

W- T-ORBS
Statement level

18

V.S. • Number of observations needed
• Size of the slices
• Difference of the slices

Program Slicing
- For all numeric variables

Gold et al., "Generalized Observational Slicing for Tree-Represented Modelling Languages”, FSE’17

MOAD - Subjects

19

Subject SLoC # of statements # of numeric variables

 mbe * 64 45 16

 mug * 61 44 13

 wc * 46 33 17

 print_tokens 410 388 98

 print_tokens2 387 364 75

 replace 508 465 253

 schedule 283 252 75

 schedule2 276 248 81

 tot_info 314 227 210

 tcas 152 110 62

* Binkley et al., "ORBS and the limits of static slicing”, SCAM'15

20

of observations (log scale)

=MOAD, 1-hot
W-ORBS 0.37% =MOAD, 2-hot

W-ORBS 18.7% =MOAD, 2-hot
T-ORBS 79.8%

1-hot
2-hot

W-ORBS
T-ORBS

2-hot 1-hot<

Once-success

21

Mean slice size / Original program size (%)

1-hot 2-hot

Logistic
Bayesian

Once success Logistic, Bayesian<

2-hot 1-hot<

Once-success

21

Mean slice size / Original program size (%)

1-hot 2-hot

Logistic
Bayesian

Once success Logistic, Bayesian<

2-hot, Once success v.s. W-ORBS :

18.7% of observations needed, while16% larger slice generated

2-hot, Once success v.s. T-ORBS :

79.8% of observations needed, while 7% larger slice generated

22

O: Once-success
L: Logistic
B: bayesian

Miss
The number of statements

MOAD fails to delete

Excess
The number of statements
MOAD excessively deletes

R
at

io
 (%

)

Future work

Enhance MOAD

• Advanced, adaptive deletion generation scheme

• Alternative inference algorithm

- Bayesian Networks, Markov Random Fields, Gaussian processes

• Parallelization

23

Future work

Enhance MOAD

• Advanced, adaptive deletion generation scheme

• Alternative inference algorithm

- Bayesian Networks, Markov Random Fields, Gaussian processes

• Parallelization

23

Apply MOAD to various other SE tasks

25

Appendix A. Success rate

26

• WSk, TSk, and MSk: The slice taken with respect to
criterion ck as computed by W-ORBS, T-ORBS, and
MOAD, respectively.

• miss: Given a reference slice (e.g., WSk) and an inferred
slice (e.g., MSk) the number of units that should have
been removed (i.e., that were missed) from the inferred
slice. In other words, it is the number of units in the
inferred slice that are not in the reference slice.

• excess: Given a reference slice (e.g., WSk) and an
inferred slice (e.g., MSk) the number of units that are
excessively removed from the inferred slice. In other
words, it is the number of units in the reference slice
that are not in the inferred slice.

By design T-ORBS and MOAD share the same set of
deletable units. Thus, we can calculate miss and excess
directly applying a set difference between the set of units
making up the slice. Since W-ORBS modifies the source code
at the line-of-text level, the same method is not viable when
comparing W-ORBS and MOAD. Instead, we use a python
difflib module to calculate miss and excess at the line level.

V. RESULTS

A. Viability
To answer RQ1, we first create a random slicer. Our

implementation randomly deletes each unit with a probability
of 0.5. For every slicing criterion in every subject program, we
run the random slicer ten times and check whether the slice
generated preserves the trajectory of the slicing criterion. With
900 slicing criteria (see Table I) spread across the ten subject
programs, the random slicer generates 9,000 slices in total.
Only fifteen of the random slices compile, and none of them
preserve the trajectory of the given slicing criterion. This result
clearly indicates that it is very unlikely to produce a slice by
chance.

Subject Deletion
Gen. Scheme

Success Rate
O L B

mbe 1-hot 100% 100% 100%
2-hot 100% 100% 100%

mug 1-hot 100% 100% 100%
2-hot 100% 100% 100%

wc 1-hot 100% 100% 100%
2-hot 88% 76% 100%

prttok 1-hot 03% 04% 11%
2-hot 03% 03% 11%

prttok2 1-hot 72% 19% 77%
2-hot 63% 13% 67%

replace 1-hot 7% 31% 28%
2-hot 3% 13% 31%

sched 1-hot 48% 47% 41%
2-hot 39% 35% 43%

sched2 1-hot 30% 26% 28%
2-hot 17% 26% 28%

totinfo 1-hot 52% 50% 62%
2-hot 32% 10% 65%

tcas 1-hot 48% 90% 48%
2-hot 26% 68% 48%

TABLE II: MOAD’s success rate on the ten test subjects

In contrast, Table II shows the ability of MOAD to produce
viable slices that not only compile, but also capture the desired

semantics. In the table, the second column shows the deletion
generation scheme used to generate the observations. Then
in the remaining columns we report the success rate for
each of the three inference models, O, L, and B, as the
percentage of ‘slices’ that preserve the desired trajectory. For
the smaller programs mbe, mug, and wc, most slices preserve
the trajectory successfully. For the Siemens suite 42% of the
generated slices preserve the trajectory.

In the table, prttok shows a particularly low success rate.
Investigating this, we found that the root cause was two
lines of code, shown in the snippet below, where there is
a data dependence from Line 188 to Line 189. What is
unusual about these two lines is that for many slices that
do not depend on the value of t o k e n p t r it is possible to
individually delete either Line 188 or 189 without affecting
the trajectory, but not both. Thus the model learns to remove
each line. Consequently, when MOAD infers a slice it tends to
unwantedly omit both lines. The result is that most trajectories
change. This suggests the use of stronger statistical models
(e.g., Rasmussen’s Gaussian processes [21]), that can capture
higher-level interaction effects between program elements.
164 s t a t i c t o k e n n u m e r i c c a s e (. . .)
165 {

. . .
188 s t r c p y (t o k e n p t r�>t o k e n s t r i n g , t o k e n s t r) ;
189 re turn (t o k e n p t r) ;
190 }

Based on these results, we answer RQ1 as follows:

RQ1. Viability: Inference models trained using dynamic
observations can successfully learn program dependence.

B. Model Impact
Our initial look at the impact that a given model has focuses

on the model’s ability to remove units. Table III shows the
average slice size, µ (WSk), µ (TSk), and µ (MSk), over all
slicing criteria for W-ORBS, T-ORBS, and the three models
used with MOAD. To facilitate inter-program comparison,
the average slice sizes are given as a percentage of the
original program’s size. The table also shows the number of
observations involved. For W-ORBS and T-ORBS this count
reflects the number of compilations and executions made while
computing each slice, while for MOAD the number is the
number of compilations and executions used in constructing
the training data.

To gain some intuition for the relative slice sizes, we first
compare MOAD’s average slice size with that of W-ORBS
and then T-ORBS before focusing in on the impact of the
individual models. Due to the approximate nature of the
inference, MOAD is expected to generate larger slices than
W-ORBS or T-ORBS. To normalize the data across programs,
we first consider the ratio of the average slice size generated
using one of the six MOAD variants (2 deletion generation
scheme ⇥ 3 inference model) to the average W-ORBS slice
size.

Compared to W-ORBS, the results find that MOAD pro-
duces slices that are on average 45% larger than those pro-

Appendix B. Sampling Effect

27

Fig. 1: The figure presents µ (MSk) which represents the mean slice size given as a percentage of the original program’s size, generated by MOAD using
each size of the sample from 2-hot data. The boxplot shows the results of a trained model from 10 different random samplings. The red and blue line represents
the ratio of the W-ORBS and T-ORBS slice size to the original program size, averaging by all slicing criteria of all subjects.

show that as the sample size increases the size of a MOAD
slice approach that of the ORBS slices.

Because the plots indicate a fair amount of variation, we
consider each model separately. To begin with, the left two
plots for the Once Success model O suggest that it performs
better when using 100% of the data. The reduction in size is
substantial at small sample sizes, and it continues to decrease
as the sample size increases. For example, the average of the
first three slice size differences (20% � 10%, 30% � 20%,
and 40% � 30%) is 4.4 times larger than the average of the
last three slice size differences (70% � 80%, 80% � 90%,
and 90% � 100%). Note also that, when using only half
of the 2-hot observations, O generates slices that are only
3.4% larger than when using all the data. Finally, the variance
among different individual samples (the higher of the boxes)
is relatively small, which suggests that O is robust against the
stochastic sampling.

For the Logistic model, L, the size of the slices also tends
to decrease as the sample size increases, but the trend is
not as strong as with O. The L model also shows higher
variance across samplings, when compared to other inference
models. Similarly, while the Bayesian model, B, tends to
generate smaller slices with more observations, the median
size fluctuates and the difference in slice size between samples
is relatively small.

To gain additional statistical confidence, we applied
ANOVA separately to each model2. In all three cases, the
results are statistically significant (p < 0.0001). Applying
Tukey’s post-hoc test finds five equivalence classes of the mean
slice sizes. The most useful findings are that using samples of
40% to 90% of the 2-hot data produces mean slice sizes that
are not statistically different. The same is true of the range 50%
to 100%, suggesting that using only half the data produces
results essentially indistinguishable from using all of the data.

2The full details of ANOVA results are available online at: https://coinse.
github.io/MOAD Rdata webpage

For the L models, there is a similar band from 30% to 80%,
and two narrower bands from 60% to 90% and 80% to 100%.
These bands being narrower reflects the models being more
sensitive to the amount of data that they are trained on.

Finally, the Bayesian model, B, shows the greatest stability
with all values from 20% to 100% being in the same band.
Thus only when using a 10% sample does the model show in-
ferior performance. This suggests that these models themselves
are very robust against sampling variances. If it were possible
to improve the size and the accuracy of slices produced by B

models, the stability observed here may be a strong benefit of
using B models.

We answer RQ4 as follows.

RQ4. Sampling effect: The high rate of reduction and
high variability of the inferred slice size for small sample
sizes indicates there is some sampling effect especially with
Once Success. On the other hand, the wide bands show
that it is possible to build high performing models using
only a fraction of the training data. For example, Once
Success infers slices 3.4% larger when using only half
of the observations while the Bayesian model has similar
performance using only 20% of the training data.

VI. DISCUSSIONS AND FUTURE WORK

A. Once Success (O) vs. Critical Slicing vs. ORBS

The Once Success model, O generates slices by deleting
a line if the sub-program without the line preserves the
trajectory. This is conceptually identical to critical slicing [23]
and the slice using the pair < 1-hot, O > is exactly the same
as a critical slice. The results from Section V-C show that
the slices from critical slicing and ORBS are similar to each
other for the programs studied in this paper. The next step
is to investigate whether this tendency is retained on larger
programs with more complex dependence structures. Similarly,

