
Hyperheuristic  
Observation Based Slicing of Guava

Seongmin Lee and Shin Yoo

Korea Advanced Institute of Science and Technology
COINSE Lab

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

• Testing, Debugging, Maintenance, etc.

2

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

• Testing, Debugging, Maintenance, etc.

2

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

• Testing, Debugging, Maintenance, etc.

2

• Limitations:  
- scalability of static analysis 
- lack of supports on multi-lingual systems.

HOBBES:
Hyperheuristic  
Observation Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

• Purely dynamic & Language Independent

• Makes a series of deletions of code lines, which  
 
 1) leaves the code (still) compilable, and  
 
 2) preserves the trajectory of the slicing criterion.

• Approximate the program dependence via observations of
test executions.

3

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE144

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

Window-Deletion

4

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

i=11

Window-Deletion

4

Observation-Based Slicing (ORBS)

• Purely dynamic & Language Independent

• Able to slice programs on which

• static slicers are guaranteed to err,

• have highly unconventional semantics.

[3] ORBS and the Limits of Static Slicing, SCAM15

[9] Observational slicing based on visual semantics, JSS17

5

Limitations of ORBS

• Scalability

6

Limitations of ORBS

• Scalability

6

Limitations of ORBS

• Scalability

- Takes around 7200 s  
to delete 220 lines.  
 ⇒ 0.03 del/s 
 ⇒ 32.7 s/del

()‘escape’ package 
on Guava

6

Scalability

7

Efficiency

7

Number of  
Deleted Lines

Time spent

Efficiency

7

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

7

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

7

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

7

Deletion based on Lexical Similarity

8

Deletion based on Lexical Similarity

“ Delete all lines of code that are related to a word ‘log’! ”

8

Deletion based on Lexical Similarity

“ Delete all lines of code that are related to a word ‘log’! ”

Spatial 
Neighborhood

Dependence Approximation

8

Deletion based on Lexical Similarity

“ Delete all lines of code that are related to a word ‘log’! ”

Spatial 
Neighborhood

Lexical 
Neighborhood

Dependence Approximation

8

Deletion based on Lexical Similarity

• Vector Space Model

- Traditional method for calculating distances between
text documents and a query.

• Latent Dirichlet Allocation

- Probabilistic model that describes which topics are
present in a given document.

• Consider each code lines as a document.

• Attempts to delete code lines whose similarity is above
certain threshold.

9

Deletion based on Lexical Similarity

• Vector Space Model

- Traditional method for calculating distances between
text documents and a query.

• Latent Dirichlet Allocation

- Probabilistic model that describes which topics are
present in a given document.

• Consider each code lines as a document.

• Attempts to delete code lines whose similarity is above
certain threshold.

➡ VSM-Deletion

➡ LDA-Deletion

9

⇒ Line Similarity based ORBS (LS-ORBS)

Deletion based on Lexical Similarity

• Vector Space Model

- Traditional method for calculating distances between
text documents and a query.

• Latent Dirichlet Allocation

- Probabilistic model that describes which topics are
present in a given document.

➡ VSM-Deletion

➡ LDA-Deletion

9

[7] Using source code lexical similarity to improve efficiency of observation based slicing

Deletion based on Lexical Similarity

WINDOW_S
_4

5 i
ter

s

VSM_T
H_0

.9

3 i
ter

s

LD
A_T

H_0
.9_

TS_5
00

2 i
ter

s

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

0
50

0
10

00
15

00
20

00
25

00
30

00

C
om

pi
le

s

Ex
ec

ut
es

Strategy

21168

2617 1903

2609

462
352

973

223 213

●

●

●

21.76

11.74

8.93

2.68

2.07

1.65

●

Compiles
Execcutes
Deletes
Comp/del
Exec/del

WINDOW_S
_4

5 i
ter

s

VSM_T
H_0

.9

3 i
ter

s

LD
A_T

H_0
.9_

TS_5
00

2 i
ter

s

28624.6

4793.1 3845.1

973

223 213

0
50

00
15

00
0

25
00

0

0
50

0
10

00
15

00
20

00
25

00

Ti
m

e(
se

c)

D
el

et
es

(li
ne

)

Strategy

●

●

●

29.42

21.49

18.05

●

Time
Deletes
Time/del

Commons_cli_vsm_ldaLoc # = 2081 Loc # = 2081

53.3% less compilations, 34.3% less executions, 39.3% less time

per 1 deleted lines.

10

Compare Strategies

of deleted lines

Efficiency

11

Compare Strategies

of deleted lines

Efficiency

ORBS
Window-Deletion

11

Compare Strategies

of deleted lines

Efficiency

LS-ORBS

ORBS
Window-Deletion

VSM-, LDA-Deletion

11

Compare Strategies

LS-ORBS ORBS

11

Compare Strategies

LS-ORBS ORBS

VSM-, LDA-Deletion 
+ 

Window-Deletion

11

Compare Strategies

of deleted lines

Efficiency
LS-ORBS

ORBS

11

Q. How to select the operator  
among various kind of  
deletion operators ?

12

Hyperheuristic Observation Based Slicing  

(HOBBES)
(On selecting deletion operators)

12

HOBBES Algorithm

13

• Initialize selection probability of  
deletion operators with uniform
distribution

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

13

• ‘Roulette Wheel Selection’

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

13

• ‘Roulette Wheel Selection’

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

13

• Apply selected deletion operator
on source code.

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

13

• Apply selected deletion operator
on source code.

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

13

Probability update formula ‘UPDATE’  
ω: penalty value (ω ∈ [0,1]), l: # of deleted lines

, trajectory changes

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

• Update the probability.

13

HOBBES Algorithm

D1
D2

D3

D4
D8

D5 D7D6

• Update the probability.

Success to delete

13

HOBBES Algorithm

D1
D2D3

D4

D8
D5

D7D6

• Update the probability.

Compilation error /  
Trajectory Change

13

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

• Update the probability.

13

HOBBES - Configuration

• Studied Deletion Operators

- Window-Deletion of size 1, 2, 3, 4.

- VSM-, LDA-Deletion of threshold 0.6, 0.7, 0.8, 0.9.

• Subject: Guava library

- 2 slice criteria for each of subpackage ‘escape’ and ‘net’.

• Machine

- Intel Core i7-6700K running Ubuntu 14.04.5 LTS.

14

HOBBES - Results

15

HOBBES - Results

●

●

●

●

1 2 3 4

0
10

0
20

0
30

0
40

0

0
20

00
60

00
10

00
0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Escape_1

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●

●

1 2 3 4 5

0
50

15
0

25
0

35
0

0
40

00
80

00
12

00
0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Escape_2

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

15

HOBBES - Results

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Net_1

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Net_2

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

15

HOBBES - Results

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Net_1

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

Ti
m

e(
s)

Net_2

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

• HOBBES can delete about 71% of the number of lines that ORBS deletes.
• However, HOBBES only takes about 30% of the time spent by ORBS.

15

Again, Compare Strategies

LS-ORBS

ORBS

of deleted lines

Efficiency

16

Again, Compare Strategies

LS-ORBS

ORBS

HOBBES

of deleted lines

Efficiency

16

ㅒ뀬

• Investigate non-iterative application of deletions.

• Apply more sophisticated lexical analysis.

- For example, token normalization

[“open_file”] → ["open", “file”]

Future Work

17

18

How the selection probability of deletion operators changed?

19

