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Program Slicing

• Generates a subset of the original program, 
while preserving the specific behavior of 
the original program. 

• Specific behavior: Slicing Criterion < i , V > 
( i : line number, V : variable name) 

• Testing, Debugging, Maintenance, etc.
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• Limitations:  
-  scalability of static analysis 
-  lack of supports on multi-lingual systems.



HOBBES: 
Hyperheuristic  
Observation Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

• Purely dynamic & Language Independent 

• Makes a series of deletions of code lines, which  
 
     1)    leaves the code (still) compilable, and  
 
     2)    preserves the trajectory of the slicing criterion. 

• Approximate the program dependence via observations of 
test executions.
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Observation-Based Slicing (ORBS)
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Observation-Based Slicing (ORBS)

• Purely dynamic & Language Independent 

• Able to slice programs on which 

• static slicers are guaranteed to err, 

• have highly unconventional semantics.

[3] ORBS and the Limits of Static Slicing, SCAM15

[9] Observational slicing based on visual semantics, JSS17
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Limitations of ORBS

• Scalability
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Limitations of ORBS

• Scalability

- Takes around 7200 s  
to delete 220 lines.  
   ⇒ 0.03 del/s 
   ⇒ 32.7  s/del

(          )‘escape’ package 
on Guava
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Scalability
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Efficiency
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Number of  
Deleted Lines

Time spent

Efficiency
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Deletion based on Lexical Similarity
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“ Delete all lines of code that are related to a word ‘log’! ”
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Deletion based on Lexical Similarity

• Vector Space Model 

- Traditional method for calculating distances between 
text documents and a query.

• Latent Dirichlet Allocation 

- Probabilistic model that describes which topics are 
present in a given document.

• Consider each code lines as a document. 

• Attempts to delete code lines whose similarity is above 
certain threshold.
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⇒ Line Similarity based ORBS (LS-ORBS)

Deletion based on Lexical Similarity

• Vector Space Model 

- Traditional method for calculating distances between 
text documents and a query.

• Latent Dirichlet Allocation 

- Probabilistic model that describes which topics are 
present in a given document.

➡ VSM-Deletion

➡ LDA-Deletion
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[7] Using source code lexical similarity to improve efficiency of observation based slicing



Deletion based on Lexical Similarity
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53.3% less compilations, 34.3% less executions, 39.3% less time 

per 1 deleted lines.
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Compare Strategies

# of deleted lines

Efficiency
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Compare Strategies

# of deleted lines

Efficiency

LS-ORBS

ORBS
Window-Deletion

VSM-, LDA-Deletion

11



Compare Strategies
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Compare Strategies

LS-ORBS ORBS

VSM-, LDA-Deletion 
+ 

Window-Deletion
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Compare Strategies

# of deleted lines

Efficiency
LS-ORBS

ORBS
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Q. How to select the operator  
among various kind of  
deletion operators ?
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Hyperheuristic Observation Based Slicing  

(HOBBES)
(On selecting deletion operators)
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HOBBES Algorithm
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• Initialize selection probability of  
deletion operators with uniform 
distribution

HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6
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• Apply selected deletion operator 
on source code.
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• Apply selected deletion operator 
on source code.
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Probability update formula ‘UPDATE’  
ω: penalty value (ω ∈ [0,1]),   l: # of deleted lines

, trajectory changes



HOBBES Algorithm

D1
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• Update the probability.
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HOBBES Algorithm

D1
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D5 D7D6

• Update the probability.

Success to delete
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HOBBES Algorithm

D1
D2D3

D4

D8
D5

D7D6

• Update the probability.

Compilation error /  
Trajectory Change
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HOBBES Algorithm

D1
D2D3

D4

D8D5
D7D6

• Update the probability.
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HOBBES - Configuration

•  Studied Deletion Operators 

- Window-Deletion of size 1, 2, 3, 4. 

- VSM-, LDA-Deletion of threshold 0.6, 0.7, 0.8, 0.9. 

• Subject: Guava library 

- 2 slice criteria for each of subpackage ‘escape’ and ‘net’.  

• Machine 

-  Intel Core i7-6700K running Ubuntu 14.04.5 LTS.
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HOBBES - Results
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• HOBBES can delete about 71% of the number of lines that ORBS deletes. 
• However, HOBBES only takes about 30% of the time spent by ORBS.
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Again, Compare Strategies

LS-ORBS

ORBS

# of deleted lines

Efficiency
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ㅒ뀬

• Investigate non-iterative application of deletions. 

• Apply more sophisticated lexical analysis. 

- For example, token normalization 

[“open_file”] → ["open", “file”]

Future Work
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How the selection probability of deletion operators changed?
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